
i .■.:.-.; 

B - ■ H 

■   '■"■ B 

■ 

B 

i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 

• • "'  -'V'.'." - 
"■•V: 

■ '•;■' ■ 

■-•■ ■' ,:- 

■.^..-.^■--^...■c-.j;^..,-... .■: 

ROBOT ASSISTED MATERIAL HANDLING 
FOR SHIRT COLLAR MANUFACTURING 
— TURNING AND PRESSING — 
DLA 900-87-0017 Task 0004 

FINAL REPORT 

VOLUME V: 

Three-Dimensional Machine Vision 

CENTER FOR ADVANCED 
MANUFACTURING 

V\    V-"-'   {?       '"V   -ra&.;tr-i 

UNTSTEPSPTY 

College of Engineering 
Clemson, South Carolina 29634 

DTIC QUÄLTET INSPECTED 3' 

This doctuaem has been approved 
for public lelsase and sale; its 
distribution is unlimited 

,•: 
-•-■■--■ 

•;.-: 

-"'** 

-:•*■-: 



I 
I. 
I 
I- 

r 
ROBOT ASSISTED MATERIAL HANDLING 
FOR SHIRT COLLAR MANUFACTURING 
— TURNING AND PRESSING — 
DLA 900-87-0017 Task 0004 

FINAL REPORT 

VOLUME V: 

Three-Dimensional Machine Vision 

Frank W. Paul 
Principal Investigator 

and 

David R.   Cultice 
Research Assistant 

Center for Advanced Manufacturing 
and 

Clemson Apparel Research 

Accesion For 

NTIS    CRA&i 
DTIC    TAB 
Unannounced 
Justification 

By  
Distribution I 

i 
O 
D 

Availability Codes 

Dist 

M 

Avail and/or 
Special 

Clemson University 
Clemson,   SC 

June  1992 

Di 

19950130 018 
DTIC QUALITY INSPECTED 3 



ACKNOWLEDGMENTS 

The authors would like to thank all those who were involved with support 
c    u Zr.rr       Esoeciallv it is appropriate to thank the Defense Logistics of this project.  Especially, it is ?v    y contract number 

T:7OO  ^riorirTL^O 0^ Thi wo kPPw0arc°onduct
Sed through Clemson Apparel. 

DLA w;:87;0;".!^ w°°se purpose is the advancement of apparel manufacturing 
technology anroytLTenLr ?or  Advanced Manufacturing. Clemson University. 



ABSTRACT 

Apparel manufacturers are interested in applying advan- 

ced automation techniques to gain increased productivity for 

existing labor-intensive garment assembly processes. The 

objective of this thesis is to investigate the usefulness of 

three-dimensional vision sensing for fabric material manipu- 

lation. A three-dimensional (3-D) range finder composed of a 

charge coupled device (CCD) camera and a facility for pro- 

jecting laser stripes has been developed and implemented in a 

robotic workstation dedicated for turning and pressing shirt 

collars. Through image processing and triangulation, the 

range finder develops position information which is used by 

the robot to properly position the collar on a pressing 

surface. 

The scanning and modeling of a collar takes between 16 

and 18 seconds, and the complete sensing and positioning 

procedure requires 20 seconds with robot velocities of 20 

ips. The range finder is capable of locating a 3-D point in 

space to within a ±2 mm precision in the depth direction, and 

to within ±1 mm in the orthonormal directions. Collars are 

positioned on the pressing work surface with a precision of 

±4 mm which is within tolerance for a successful collar 

placement. This application of 3-D vision sensing for flexi- 

ble fabric manipulation demonstrates the promising potential 

of 3-D vision sensing for apparel manufacturing. 



TABLE OF CONTENTS 

Page 

TITLE PAGE   i 

ABSTRACT   Ü 

ACKNOWLEDGEMENTS   Üi 

LIST OF TABLES   vi 

LIST OF FIGURES  .•  VÜ 

CHAPTER 

I. INTRODUCTION   1 

Background   2 
Literature Survey  7 
Research Objectives and Problem Statement ... 15 
Thesis Organization   17 

II. VISION SENSING FOR LIMP MATERIAL HANDLING   18 

Problem Structure   18 
The Collar Model   21 
Collar Loading Procedure   29 
Three-Dimensional Vision Sensing   31 
Concluding Remarks   37 

III. VISION SYSTEM IMPLEMENTATION   38 

Range Data Scanner Design   38 
RDS Integration   47 
AAW System Control   50 
Image Processing   54 
Collar Model Algorithm Design   61 
The Frame Match and Robot Trajectory   71 
Summary of the System Operation Process  77 

IV. PERFORMANCE EVALUATION   80 

Range Data Scanner Accuracy   81 
Collar Model Accuracy   89 
Collar Loading Accuracy   97 
System Speed   102 
System Operation   103 



V 

Table of Contents (Continued) 

Page 

V. CONCLUSIONS AND RECOMMENDATIONS   104 

Conclusions   104 
Recommendations   106 

APPENDICES   109 

A. Equipment Specifications   110 
B. Range Data Calibration   114 
C. System Calibration   122 
D. System Operation •  126 
E. Source Code Listing   128 

LIST OF REFERENCES   156 



LIST OF TABLES 

Table Page 

I. Bias and Precision Errors in Measurement 
for Common Points Measured by Both RDS 
and Robot Calibration Pointer     87 

II. Bias and Precision Errors in the Measurement 
of ID_frame Measured by Both the Collar 
Model Algorithm and the Robot Calibration 
Pointer    94 

III. Bias and Precision Errors for the Measurement 
between Loaded Collar Points and Respective 
Extended Creaser Blade Tip Positions    101 

B-I. The Parameters Used in RDS Triangulation and 
the Corresponding Measurement Errors    120 



LIST OF FIGURES 

Figure Page 

1.1 Illustration of turned shirt collar   4 

1.2 Research workstation layout   6 

1.3 Fabric alignment with two cameras   9 

1.4 Profilometry for automated garment design   11 

1.5 Principle of range finding by space encoding   12 

1.6 A stereo camera model for range finding   14 

1.7 A structured light example   16 

2.1 End-effector with turned collar   19 

2.2 The quadrilateral collar model   22 

2.3 Demonstration of collar swing line   24 

2.4 Further demonstration of collar swing line   25 

2.5 Imaginary quadrilateral plane parallel 
to vacuum surface   27 

2.6 ID_frame and target_frame assignments   28 

2.7 Clearance between creaser blades and 
loaded collar opening   30 

2.8 Basic triangulation geometry   32 

2.9 Basic laser striping configuration   33 

2.10 General pinhole camera model   35 

2.11 Acquired image of laser stripe   36 

3.1 The Range Data Scanner with collar  39 

3.2 The RDS in the AAW workspace *  41 

3.3 RDS component configuration and basic geometry ... 43 

3.4 RDS geometry for triangulation   45 



Vlll 

List of Figures (Continued) 

Page 

3.5 RDS, AdeptOne robot, and workspace   48 

3.6 The end-effector with calibration pointer   49 

3.7 AAW configuration   51 

3.8 AAW components required for collar loading   53 

3.9 Laser stripe isolation   56 

3.10 Region growing operator   58 

3.11 The region grown stripe of Figure 3.9(b)   59 

3.12 Linescan to stripe, followed by edgefind 
bug search for stripe endpoints   62 

3.13 Flowchart for image processing algorithm   63 

3.14 Flowchart for collar model algorithm ..  65 

3.15 Stripe placement for a presented collar   66 

3.16 Left collar point approximation   68 

3.17 Extrapolation for corresponding stripe position .. 69 

3.18 Flowchart for frame match and 
robot trajectory operations   72 

3.19 ID_frame and target_frame assignments   73 

3.20 Robot trajectory to load collar   75 

3.21 Flowchart for complete sensing and 
loading operation   78 

4.1 Calibration pointer with laser stripe through 
the pointer tip   83 

4.2 Left, Central, and Right common point regions .... 85 

4.3 Three-Dimensional representation of bias 
and precision error  86 

4.4 Device for -physically identifying presented 
collar points 90 



1-X 

List of Figures (Continued) 

Page 

4.5 Two-Dimensional left_point(x,y)^  and 
right_point(x,y)^ estimated by 
collar model algorithm   92 

4.6 Example of collar model   93 

4.7 A collar model which demonstrates inaccurate 
point prediction   96 

4.8 Collar positioned on vacuum surface   98 

4.9 Average loaded collar position versus 
target position   100 

B.1 Pinhole Camera Model Geometry     115 

B. 2 RDS Geometry  117 

B.3  Configuration for laser striping on wall   119 

C. 1 The intermediate frame EE frame   123 



CHAPTER I 

INTRODUCTION 

Clothing manufacturers in the United States face a 

difficult financial situation due to the economic pressure to 

compete with low-cost imports. Since clothing manufacture is 

labor intensive, retail companies generally choose to import 

assembled apparel from countries with low labor costs. This 

has reduced prices and profit margins for domestic clothing 

manufacturers and has created an employment depression within 

the U.S. apparel industry. Retailers also demand a quick 

response along with greater flexibility and variety in design 

from the manufacturer. The development of flexible clothing 

automation can lower manufacturing costs for a garment manu- 

facturer through enhanced productivity. Automation is essen- 

tial if the domestic apparel manufacturing industry [1] is to 

survive in the world market; and many major clothing auto- 

mation research programs are in progress or have been com- 

pleted in Japan, Europe, and in the United States. 

Robotics, machine vision, and other sensors such as 

proximity and force sensors are used by manufacturers in the 

automotive, pharmaceutical, and electronic industries. 

However, due primarily to the high cost of required research 

and capital investment, the apparel industry has lagged 

dangerously behind in applying advanced automation. Trans- 

ferring automation techniques from other industries to the 



2 

apparel industry is not a simple task since apparel fabrics 

are inherently limp, whereas rigid objects are processed in 

other manufacturing industries. Due to imprecise structural 

geometry, processing limp fabrics requires an added magnitude 

of research, ordinarily unwarranted when automating a process 

in other industries. Thus, new handling and sensing tech- 

niques are necessary to facilitate an automated apparel 

process. 

This thesis addresses the use of three-dimensional (3-D) 

vision for sensing limp fabric material. Vision sensing is a 

complementary technology to automating processes, permitting 

visual process monitoring, often in real-time. Automated 

apparel processes stand to benefit greatly from the imple- 

mentation of 3-D visual sensors. 

Background 

The present state-of-the-art in advanced commercial 

sewing equipment uses semi-automatic sewing units which 

reduce the requirement for a skilled operator [2]. These 

units are characterized by high specialization, minimal 

programmability, and limited flexibility to style changes; 

they require frequent manual adjustments to accommodate 

different sizes and fabric types. These machines are best 

described as semi-hard automation devices. Handling opera- 

tions such as ply separation, parts mating, and parts feeding 

are often currently performed manually [3]. 

An automated sewing system requires a comprehensive and 

adaptable sensing capability to detect the location and 



3 

condition of fabric workpieces. Though many sensing tech- 

nologies are available and have been successfully employed in 

the past, machine vision is an excellent method for geometric 

sensing because of its non-contact nature. Norton-Wayne [4] 

points out that the eye-brain system of the human worker is 

required at many stages of the apparel manufacturing process, 

and can be replaced by the machine vision functions of pat- 

tern recognition and image analysis to aid in achieving 

automation. Reluctance by the apparel industry to employ 

machine vision has been a result of high cost and the miscon- 

ception that machine vision is unreliable and requires com- 

plicated programming. However, due to lower hardware costs 

and improved technologies, machine vision is beginning to 

gain acceptance in the industry as exemplified by the several 

sewing units, currently on the market, which utilize optical 

sensors for real-time edge tracking and locating fabric plies 

for alignment. 

A research team at Clemson University investigating 

advanced apparel automation has undertaken a project to 

automate an existing shirt collar processing task. A shirt 

collar is composed of two plies of shirt fabric and an inner 

liner. The plies are aligned with the shirt fabric together 

and the liner on top and then stitched 3/16 inch from the ply 

border on three sides. The unsewn border enables the collar 

to be turned such that the liner is on the inside and the 

rough edges are hidden as shown in Figure 1.1. Currently, 

one of the most labor intensive tasks within the apparel 



Collar Point 

Top View 

Lined Ply Collar Pocket 

Oblique View 
Unlined Piy 

Figure  1.1.     Illustration of turned shirt collar. 



5 

industry is the process of turning a shirt collar right side 

out, and pressing it with its edge seam aligned directly 

along the collar perimeter. In today's factories, an opera- 

tor uses a manually operated machine to aid in inverting and 

pressing shirt collars. 

The operator's responsibilities are primarily hand-eye 

coordination tasks which involve locating the collar, apply- 

ing tension to the collar, and aligning the collar seam along 

the edge of a creaser blade. It is critical to (1) create 

sharp collar points and (2) align the seam along the outer 

edge of the pressed collar for the collar to be accepted. 

A workstation has been developed with an AdeptOne SCARA 

robot and two dedicated in-house designed machines: one to 

invert or "turn" the collar, and the other to align the 

collar seam and press the collar to automate the shirt collar 

turning and pressing process. Figure 1.2 shows the schematic 

layout for the workstation. The robot maneuvers the collar 

between the process stages with a robotic handler, an end- 

effector designed for collar manipulation [22]. The collar 

must be retrieved from the turning machine, transported to 

the pressing machine, and positioned in a precise location at 

the pressing station. The collar positioning task involves 

vision sensing, since the collar is not rigid. Uncertainty 

is introduced in the position of the collar relative to the 

end-effector when the robot retrieves the collar from the 

turning machine.  A three dimensional machine vision process 



End-effector 

Turning Device 

transported collar 

turned collar 

AdeptOne Robot 

Pressing Device 

collar to be positioned 

vacuum work surface 

Figure 1.2.     Research workstation layout   (overhead view) 



7 

is used to identify the collar position relative to the end- 

effector for placement at the pressing station. 

Literature Survey 

The literature reports that a significant amount of 

research has been conducted in the fields of machine vision 

and image processing. In this thesis, the literature which 

addresses the apparel is divided into three general group- 

ings: (1) research and applications of two-dimensional vi- 

sion, (2) research and applications of three-dimensional 

vision, and (3) general 3-D vision research with strong 

possibilities for application in the apparel industry. 

Two-Dimensional Vision Research 
in the Apparel Industry 

Two-dimensional machine vision involves observing planar 

surfaces which are normal to the camera line of sight. A 

simple calibration conversion between CCD camera (charge 

coupled device) pixels and the viewed surface area permits 

evaluation of the image. Due to its relative simplicity, and 

perhaps greater application demand, two-dimensional vision 

applications are more prevalent in the apparel industry than 

three-dimensional applications. Gershon and Porat's vision 

servo controlled sewing system directs the manipulation of 

fabric panels beneath a sewing head [2]. A camera is used to 

locate the position of the fabric ply, and with this posi- 

tional information the system is able to respond with a 

servoed action. Similarly, Taylor's [5] work has involved 

matching plies which are to be joined; Kelley [6] has worked 



8 

with the sensing and picking of plies from stacks and convey- 

or belts; and Iype and Porat's [7] work has included fabric 

alignment. Figure 1.3 displays the process of utilizing two 

cameras for fabric alignment as described in [7]. Torgerson 

and Paul's vision guided robot system analyzes the profile of 

a fabric panel and deduces the manipulator path to produce an 

approximate edge seam equidistant from the workpiece border 

[8]. 

Three-Dimensional Vision Research 
in the Apparel Industry 

Three-dimensional vision sensing of flexible materials 

is an area which has extensive possibilities in the apparel 

industry.   Apparel workers routinely use their sense of 

vision in material manipulation, suggesting that 3-D visual 

sensing is important in the automation of apparel fabric 

handling and processing.  Although some 3-D processes can be 

simplified to 2-D tasks for automation purposes, others 

cannot be changed and require the use of 3-D visual sensing. 

Geometric measurement and inspection of semifinished or 

finished garments are possible uses of 3-D machine vision. 

Another use involves detecting an object in 3-D space, for 

the purpose of sewing by a 3-D robotic sewing head.  Juki 

(Japan) has demonstrated a robot with a sewing head for 

joining 3-D seams, such as where the seam joins the sleeve 

and shoulder workpieces [9].  Taylor [3] states that 3-D 

manipulations may involve folding fabric subassemblies, 



• 
• 
• 
c  
1 

"~ i 

   

1 

i 
t 
t 
r 

A   / 

f 

t  —'   / 
 j 

(a) X and V Movement for Camera 1 

Cjm*ra2 

r 
j 

(b) Rotational Movement for Camera 1 

CMMI C*iwra2 

\      • 
\      t 

■                                                        S ' 

/ / 
/ / 
/ / 
/  / 

 IJ 

(c) X and Y Movement for Camera 2 

— —    original position of the fabric 
— position of the fabric before move, 
_~      position of the fabric after move. 

Figure 1.3.  Fabric alignment with two cameras [7] 



10 

turning garments inside out (inversion), or sewing along 

curved edges. 

Halioua [10] has demonstrated the phase-measuring prof- 

ilometry method for sensing the surface of the human body to 

aid in the design and fitting of garments. This method 

involves projecting a sinusoidal grating structure onto the 

surface to be measured, and detecting the resulting deformed 

grating image at an offset angle by a CCD-array camera. 

Figure 1.4 demonstrates an example of such a grating on a 

human body. A microprocessor processes the images using 

interferomic phase-measuring algorithms to arrive at a grap- 

hics model of the image. The graphics model is then con- 

verted into fabric cut-size patterns. 

Other Three-dimensional Vision Activity 

Sato et al. [11,12] has developed a 3-D surface measure- 

ment system utilizing a liquid crystal mask which by masking 

a projector creates a predefined pattern on the unknown 

surface. A short series of these computer commanded patterns 

is projected on an object, and the acquired camera images of 

the resulting deformed patterns are analyzed for depth infor- 

mation commonly known as range data or range information. 

Figure 1.5 shows an object scanned by Sato's projector with 

nematic crystal mask technology. The recovered range infor- 

mation is used in automation to interact with the located 

object, either by manipulating it, performing an action on 

it, or possibly avoiding collision with it. 



11 

Figure 1.4.  Profilometry for automated garment design [10] 



12 

task Patterns 

(^Projector 

0   Canera 

\    MISS:] Uilllmlnoted      \ 
1    0   1   0  1   0 1 0 - C lO:Non-illunlnate<l) 

Input Blnarlzlnq    Bit-plane 
Camera I    i<^S*l   I    ^*^^>    52ÜDä. 

Range Image 
Gray->B1nary 

\   A 
♦ 

Range transform   —*■ 

Figure 1.5.  Principle of range finding by space encoding 
[11,12]. 



13 

Three-dimensional range imaging is an established field 

of research and application [13]. Applications include 

inspection and geometric measurement of conveyed or still 

items; sensing of contours for planned path control for 3-D 

welding, gluing, or seam sewing operations; and sensing of 

the environment for controlling the movement of an automated 

guided vehicle (AGV) or robot. Computed tomography (CT) , 

used to sense the internal organs of the human body, CAT 

scanning, and ultrasound imaging are other familiar forms of 

3-D range sensing [14]. As computer processing speeds and 

memory capability improve, 3-D vision systems will become 

less expensive and more accepted for many complex industrial 

applications. 

Many of the 3-D sensing methods available use triangu- 

lation to extract 3-D data. This is typically accomplished 

in one of two ways: (1) with stereo cameras or (2) with one 

camera and structured lighting [15]. Structured lighting is 

defined as a calibrated projected grid of line(s) or dot(s) 

from a light source. Typically, the light source is a pro- 

jector with a grating lens or a laser with appropriate op- 

tics. The displayed pattern on the object is evaluated by 

the single camera to determine range information. Stereo 

vision involves the relative position of individual images of 

common points in a camera pair, as in Figure 1.6. These 

common points are used with triangulation to determine range 

data. Structured lighting does not involve recognizing such 

points since the machine vision algorithm need only detect 



14 

LEFT CAMERA 

««.».x.1 

K 

*r 

Figure 1.6 A stereo camera model for range finding [20]. 



15 

the variations of the projected pattern on the object, as 

shown in Figure 1.7. Structured light, particularly from a 

laser source, offers the added benefit of being easily dis- 

tinguished from ambient or factory lighting. This research 

uses structured laser light in conjunction with a CCD camera 

to perform 3-D sensing. 

Research Objectives and Problem Statement 

The research objective of this thesis is to contribute 

to the research base necessary to make 3-D vision sensing 

useful for the apparel industry.  The ability to determine 

the surface profile and object geometry of flexible fabric 
* 
workpieces is required for many automated handling and manip- 

ulation applications since the workpiece shape and position 

can vary. Typical workpieces range from single ply materials 

to semifinished subassemblies such as a sleeve or collar from 

a shirt. 

To demonstrate the use of three-dimensional vision 

sensing, an application has been selected which involves 

positioning a shirt collar within the workspace of an apparel 

assembly workstation. It is critical to position the collar 

to its specified location with precision. The problem state- 

ment can be formally stated as: 

Develop a system to position a shirt collar within a 
toleranced location on a work surface. A three-dimen- 
sional vision sensor is used to provide the required 
feedback, and thus this work will provide an investiga- 
tion of three-dimensional vision sensing for apparel 
applications. 



16 

laser 

cylindrical lens' 

CCD camera 

sheet of laser light 

laser stripe imaged by camera 

Figure 1.7.  A structured light example. 



17 

To perform 3-D vision sensing, considerations must be 

given to: (1) the hardware to generate a single sheet of 

laser light at variable positions, (2) the calibrated geome- 

try for determining range data, and (3) image processing 

techniques for detecting the light stripe on the acquired 

images. A mathematical collar model is developed to describe 

the collar geometry prior to loading on a work surface. The 

model is compared with a desired collar location on the work 

surface to produce an error vector of rotation and transla- 

tion components. The error vector is used to generate a 

robot motion trajectory to position the collar acceptably on 

the work surface. 

Thesis Organization 

Three-dimensional vision sensing is an important method 

for locating and positioning fabric and garment assemblies. 

This thesis will present an apparel application involving 3-D 

sensing. Chapter II discusses the fundamentals in locating 

and positioning the collar on the work surface along with 

issues of 3-D vision sensing. Chapter III describes the 

hardware equipment and software algorithms used to accomplish 

the collar locating and positioning procedures. Chapter IV 

provides an analysis and discussion of the system performance 

while Chapter V presents conclusions and recommendations 

derived from this work. 



CHAPTER II 

VISION SENSING FOR LIMP MATERIAL HANDLING 

Problem Structure 

A robot with end-effector is used in the apparel assem- 

bly workstation (AAW) to acquire and move a newly turned 

shirt collar from the turning device to the work surface of 

the pressing device. The pressing device acts to insert a 

set of creaser blades into the collar opening, with the 

blades aligned inside the turned collar pocket. For this 

reason, it is critical to accurately position the collar (the 

collar points are used for reference) on the creaser blades. 

The position of the collar is unknown relative to the 

end-effector grippers. However, since the collar is acquired 

from the turning machine, a bounded region exists for the 

collar location relative to the end-effector. Given the 

three-dimensional geometry and inherent limp material charac- 

teristics of a collar, 3-D vision is employed to locate the 

position of the collar as grasped by the end-effector. 

When the collar is held by the end-effector, it has a 

pouch-like geometry, with the unstiffened ply grasped by the 

end-effector and the stiffened ply draped to create an open 

pocket as depicted in Figure 2.1. Since the top ply fabric 

is limp, the 3-D collar geometry is altered when in contact 

with the work surface of the pressing station. 



19 

Figure 2.1.  End-effector with turned collar. 



20 

A turned collar resting on the work surface is similar 

to a two dimensional object, suggesting that a two dimen- 

sional means of sensing might be used to position the collar. 

The end-effector, however, is incapable of guiding the collar 

to instructed locations on a surface. This dilemma is inher- 

ent to the geometry and material properties of the grasped 

collar. Since the opened collar is not a rigid object and 

friction exists between the lower ply and the work surface, 

the lower ply will not move identically with the robot. 

Instead, the top ply shears relative to the lower ply, with 

the geometric relationship between upper and lower plies 

difficult to predict. 

The selected method for maneuvering the collar involves 

adjusting its location in the space directly over the work 

surface, prior to placing it on the surface. This allows 

each collar to be loaded on the surface identically, without 

shearing motions against the work surface. A vacuum is drawn 

through the surface immediately following collar contact with 

the surface. This helps hold the collar in position prior to 

insertion of the pressing creaser blades. 

A mathematical model of the collar has been developed 

which analytically defines the position of a collar hanging 

from the end-effector prior to loading. This model is used 

to identify the location of the collar points in 3-D space 

and their location relative to the end-effector. With this 

knowledge and several properties inherent to a turned collar, 



21 

it is possible to predict the future location of the collar 

points when placed on the flat work surface. 

A turned collar held by the end-effector is pouch-like 

as previously shown in Figure 2.1. Both plies, including the 

stiffening liner, are folded along the seam creating a rela- 

tively stiff connection between the two collar points, pro- 

hibiting the seam to droop or crease. The seam stiffness, 

coupled with the collar point locations and the end-effector 

gripper positions, are the basis for the mathematical collar 

model. 

The Collar Model 

The end-effector gripper positions are given by the 

forward kinematic equations involving the robot position and 

the particular end-effector configuration. The AdeptOne 

robot features good repeatability due to its direct drive 

SCARA design. Thus, it is possible to locate the collar 

points relative to the end-effector grippers, implying that 

the points are known relative to the robot position. As a 

result, the collar location is defined within the AAW work- 

space. 

A quadrilateral model of the collar, as shown in Figure 

2.2, has been developed which spatially relates the collar 

points to the end-effector grippers. The wireframe model is 

defined by the two collar point positions and the two points 

of contact made between the ends of the grippers and the top 

ply fabric. The quadrilateral, which defines the top fabric 

ply (unlined), retains a constant geometry as long as uniform 



22 

End-effector gripper pair 

left-grip (xyz)R       / tension 

left_point (xyz) 

swing line 

right grip (xyz) 
R 

right_point (xyz) 
R 

quadrilateral base 

collar collar ID_frame 

 quadrilateral wireframe collar model 

Figure 2.2.  The quadrilateral collar model, 



23 

tension exists between collar points and grippers. This is 

the case when the collar hangs freely from the end-effector. 

A slight tension must be maintained as the collar is lowered 

onto the vacuum surface. 

The model predicts the location of the collar points as 

they are positioned on the vacuum surface. The collar swings 

freely from the end-effector about an axis of rotation de- 

fined between the tips of the grippers prior to loading. 

Figure 2.3 illustrates the end-effector grippers holding a 

collar and demonstrates the "swing line". The swing line 

enables the ungrasped collar geometry to remain unchanged 

regardless of the end-effector pitch angle, as shown in 

Figure 2.4. Assuming that the quadrilateral geometry is 

known, the collar can be positioned on the vacuum surface by 

commanded robot motions designed to align the collar into the 

desired workstation position. A tension applied by the end- 

effector perpendicular to the base of the quadrilateral, is 

required to keep the top ply tensioned and the quadrilateral 

geometry intact after the collar contacts the work surface. 

Three dimensional vision sensing is responsible for 

evaluating the location of the collar points in 3-D space, 

and the end-effector gripper tip locations are determined 

through forward kinematics. It is desirable to adjust the 

position of the collar prior to surface contact as though the 

collar were in a plane parallel to the work surface. This 

method for positioning is used for two reasons: (1) the work 

surface plane corresponds to the only available robot plane 



24 

swing line 

constant quadrilateral 
geometry 

Figure 2.3.  Demonstration of collar swing line. 



I 
1 
I 
I 
1 
I 
I 
I 
1 
I 
1 
I 
I 
I 
1 
I 
I 
I 
I 

25 

äKfTjjj^jSffgffir^M 

lÄ^ 
■/■-;-'(■:>: ->:r=«>v?i 

lgg||ag|M C^fp!1 
gfeg^-g- :-;^ ^r.~ * ^ ~^Eggj& 

■852 '■r-..'''"/r^"^i.':r'".','Li: 

^^s •::■'.'"'■■ 

it - ^ 

1    m 
^Rv-- ..^«^MHI 
^SBi ~t*s#^^^BI rf 

Figure 2.4.  Further demonstration of collar swing line, 



26 

of rotation, and (2) the collar must be oriented in this 

plane prior to surface contact due to friction between bottom 

ply and work surface. Theoretical collar point positions are 

calculated for the collar in a plane parallel to the vacuum 

surface and common to the end-effector gripper tip locations. 

This is accomplished by rotating the measured 3-D collar 

point coordinates about the collar axis of rotation until the 

quadrilateral surface is in the desired parallel plane. 

The coordinate frame ,,ID_frame" is assigned to the model 

identifying the collar position after the wireframe collar 

model is established between the gripper tips and the collar 

points in this plane. Figure 2.5 shows the hypothetical case 

of a collar parallel to the vacuum surface. The coordinate 

frame ID_frame is located equidistant from the collar points, 

as shown previously in Figure 2.2, with the x-axis along the 

base of the quadrilateral, and the y-axis perpendicular to 

the base directed away from the quadrilateral. 

A coordinate frame "target_frame", shown in Figure 2.6, 

is located equidistant between the creaser blade tip loca- 

tions after they are inserted and extended in the collar. 

The outlined contour on the vacuum surface indicates the 

inserted and extended creaser blade positions, which coincide 

with the loaded collar position. The collar coordinate 

frames, ID_frame and target_frame, provide for a position 

match between the collar to be loaded and a predetermined 

collar position on the vacuum surface. 



27 

parallel planes 

vacuum surface 

position 

Figure 2.5. Imaginary quadrilateral plane parallel to vacuum 
surface. 



28 

target_ 

direction 

extendable creaser 
blades 

Figure 2.6.  ID_frame and target_frame assignments. 



29 

Collar Loading Procedure 

The robot retrieves the collar from the turning device 

and moves to predetermined coordinates where the collar is 

presented to the pressing area. At this position, the end- 

effector gripper tip locations define a plane parallel to the 

pressing surface in which the collar model is evaluated. 

Coordinate frame ID_frame is assigned to the model with the 

frame origin in robot coordinates. The ID_frame is compared 

with the target_frame, also with origin in robot coordinates, 

to yield an error vector composed of AxR and AyR translations 

and an xR-yR in-plane rotation about zt. These coordinates are 

defined as the difference in ID_frame and target_frame frames 

with respect to the robot coordinate system. The difference 

in the zR direction is constant for all collars since the 

target_frame location is invariant and the gripper tip loca- 

tions, which designate the xID-yiD plane in robot coordinates, 

are dependent on the predetermined robot position. 

A robot trajectory is designed with the error vector 

information to load the collar in place for creaser blade 

insertion and extension. Following collar placement by the 

robot, a clearance remains for the creaser blades to clear 

the end-effector grippers and top collar ply. The required 

clearance of 2 mm is shown in Figure 2.7. Additionally, a 

loaded collar which has been centered on the target_frame yt 

axis provides a clearance of 11 mm for each side of the 

collar pocket between the opening of the collar and the re- 

tracted creaser blade tips.  Thus, a conservative tolerance 



30 

(a) prior to creaser blade insertion 

(b) during creaser blade insertion 

Figure 2.7 Clearance between creaser blades and loaded collar 
opening. 



31 

of ±6 mm in the xt direction is necessary to insure that the 

creaser blade assembly will insert into the collar pocket. 

This side-to-side clearance is shown in Figure 2.7. 

After the collar has been positioned on the vacuum 

surface, the AAW process continues with the pressing opera- 

tion by inserting and extending the creaser blades in the 

collar. Positioning the collar on the vacuum surface con- 

cludes the use of three-dimensional vision for the work- 

station process. 

Three-Dimensional Vision Sensing 

The collar points, which are defined in a 3-D coordinate 

system, are located with 3-D vision using range finding. The 

implemented technique for obtaining depth data, or spatial 

coordinates, involves triangulätion. Triangulation deter- 

mines the distance between the apex of a triangle and its 

base; this distance is computed with knowledge of the base 

length and its two adjoining angles as shown in Figure 2.8. 

A laser stripe source and a camera offset from the laser 

source compose a system used for detecting range data (depth 

data) by means of triangulätion. An object, such as a col- 

lar, in view of the camera and intersecting the plane of the 

projected laser light sheet features a laser stripe on its 

surface, and when viewed by the camera represents range data. 

Figure 2.9 shows the system laser striping configuration with 

geometry identical to that of Figure 2.8. A CCD camera 

(charge coupled device) features an image plane composed of a 

2-D array of light sensitive pixels.  Each pixel registers a 



32 

governing equation: 
h = d/(tan(n/2-e) +tan(7r/2-r)) 

Figure 2.8.  Basic triangulation geometry. 



33 

camera 

camera FOV 

line of sight 

sheet of laser light 

laser 

CCD array 

Figure 2.9.     Basic laser striping configuration. 



34 

brightness intensity value in the vision system software via 

A/D converters. A digital image, therefore, is a 2-D array 

of pixel intensity values. The Data Translation IRIS vision 

system (identified in Appendix A) provides a 512 x 512 pixel 

array image, with an eight bit intensity resolution (0-255 

scale) . A CCD camera is an image plane with a lens offset 

from the image plane by a focal length f. A simple camera 

configuration known as the pinhole camera model is sketched 

in Figure 2.10. This model is used for calibrating the 

camera as well as developing range data equations. 

In general, image processing involves processing pixel 

information from the acquired image as a function of the 

pixel intensity value. It is crucial to isolate the stripe 

from the background by filtering and thresholding to evaluate 

the laser stripe. Once isolated, the stripe can be detected 

with a pixel scan across the image. Figure 2.11 shows a 

laser stripe on a collar before and after the image has been 

processed to isolate the stripe. Each pixel, such as those 

composing the stripe, has x{ and y,- coordinates defined in the 

2-D image plane coordinate system. Range data, or depth 

data, for any point of the stripe on the collar is determined 

with the corresponding pixel on the image plane and the 

respective geometry of the laser plane. Also, the position 

of the camera and laser plane must be modeled and calibrated 

to give credence to the pixel information. 



35 

planes of view 

focal length Y 

view range 
depth 

pinhole lens (focal point) 

image plane 

Figure 2.10.  General pinhole camera model. 



36 

(a)   before  isolation 

B^*M 

(b) after isolation 

Figure 2.11.  Acquired image of a laser stripe. 



37 

Concluding Remarks 

A methodology has been developed to measure the location 

of object points in 3-D space using a CCD camera, HeNe laser, 

and a rotational mirror for scanning. The device is used to 

project a sheet of light on the collar, and view the result- 

ing stripe with the camera. Once the vision system has 

acquired "stripe on collar" image data, image processing 

techniques isolate and analyze the stripe for the range data. 

The range information is used to construct a collar model for 

positioning the collar on the vacuum surface of the pressing 

device. 

Range data measurement accuracy is necessary to locate 

the collar points and generate a collar model sufficient to 

successfully load the collar. Accurate range data measure- 

ments are a function of the variables involved in triangula- 

tion including those in the camera model and the range data 

instrument geometry. Calibration between the instrument 

coordinate frame and the robot workspace is important to 

relate range data to the workstation workspace since both the 

collar model and the robot trajectories are developed in 

workstation (robot) coordinates. Additional factors such as 

robot accuracy and system repeatability are important, but do 

not contribute significantly to the inaccuracy of the collar 

model since these factors have significantly higher precision 

(0.025 mm, 1 mil) as compared to the range data instrumen- 

tation (2 mm, 80 mil). 



CHAPTER III 

VISION SYSTEM IMPLEMENTATION 

A vision system range finder has been designed and 

implemented for an AAW workstation to evaluate the 3-D posi- 

tion of a collar. This chapter details the design and geome- 

try of the range finder instrument named the Range Data 

Scanner (RDS). A functional description of the RDS follows, 

including the image processing and computer algorithm neces- 

sary to construct the collar model. The interaction between 

the RDS sensor and AAW workstation is discussed in the con- 

text of the system process and its sequence of operation. 

Range Data Scanner Design 

The RDS has been designed to utilize laser striping and 

a CCD camera for geometric triangulation. The RDS incorpo- 

rates a 1 mW HeNe laser in conjunction with a cylindrical 

lens to generate a vertical sheet of light for striping as 

shown in Figure 3.1. The lens diffracts the laser beam into 

a laser sheet of light which is directed at a flat mirror 

that can be rotated to reflect the light sheet in desired 

directions. The rotational mirror is mounted to a shaft in a 

bearing housing and driven by a stepper motor. The laser, 

mirror, and stepper motor are mounted on a platform together 

with a CCD camera for viewing the projected stripe on the 

collar. The camera is angled in relation to the platform and 

laser components to achieve a field of view (FOV) adequate to 



39 

RDS platform 

directed sheet of laser light 

directional mirror 

1mW laser 

CCD camera 

camera FOV 

-presented collar 

•laser stripe 

Figure 3.1.  The Range Data Scanner with collar. 



40 

capture an image of the full collar as presented by the robot 

for loading. Figure 3.1 shows a collar positioned for range 

sensing. 

Four key parameters are important in designing the 

geometrical configuration of the RDS and its components: 

(1) the base of the triangle designated by the distance 
between the point of reflected laser light M and 
the camera focal point FP, shown in Figure 3.2, 

(2) the direction of the field of view (FOV) as deter- 
mined by the mounted camera angle, 

(3) the resolution of the mirror rotation angle, and 

(4) the pixel resolution of the camera image. 

These design parameters each contribute to the capability and 

accuracy of the range finder. It is advantageous to locate 

the RDS in close proximity to the collar for good visual 

resolution of the presented collar allowing more pixels per 

viewed area. It is equally important to keep the full collar 

in camera view to adequately image the collar points. Addi- 

tionally, the collar must be located symmetrically about a 

line extended from the mirror center to enable the scanned 

pattern on the collar to be symmetrical and easier to model. 

Though several range finder configurations are possible 

that satisfy these criteria, the RDS was designed with a 23.5 

degree camera angle to give a full view of the collar while 

maintaining the collar symmetry about a line extended from 

the mirror center and perpendicular to the RDS platform as 

shown in Figure 3.2. The perpendicularity constraint is 

necessary for aligning the RDS instrument in the AAW work- 

space. The RDS instrument was mounted on a platform designed 



41 

750 mm 

AdeptOne robot 

line of symmetry 

vacuum surface 

presented collar 

laser light sheet 

directions 

RDS platform 

Figure 3.2.  The RDS in the AAW workspace. 



42 

for adjustment in height/ pitch angle, and distance from the 

observed collar. 

Figure 3.3 depicts the component configuration and basic 

geometry for the RDS design. Dimension d, the base of the 

triangle, is the distance between the camera focal point FP 

and the point of laser sheet reflection on rotational mirror 

M. Angle 6 denotes a base angle of the triangle, measured 

between the reflected laser sheet direction and the triangle 

base. This angle is controlled by the stepper motor geared 

to the rotational mirror. Angle y is a fixed angle between 

the camera z axis (depth axis zRDS) and the triangle base. 

Angle $ is determined by a function of the camera focal 

length f and the pixel p(x,y),- position corresponding to the 

imaged stripe at position P(x,y,z)RDS in the workspace. Angle 

* is added to fixed angle y for the other triangle base 

angle. This satisfies the three required parameters for tri- 

angulation: the base length and two base angles. The fixed 

angle y and base length d were measured from the RDS platform 

layout and camera geometry with the aid of a software draft- 

ing package. The camera geometry, involving focal length f 

and focal point FP, was determined experimentally by modeling 

the CCD camera with a pinhole camera. This work is given in 

Appendix B. 

The object point P(x,y,z)RDS, as shown in Figure 3.3, is 

a point in the 3-D view space of the camera and can be con- 

sidered a point on the laser stripe projected on the collar. 

Point P(x,y,z)RDS is measured in 3-D space by the RDS with 



43 

P(x.y.z)( 

focal point, FP 

CCD plane 

laser light plane 

rotational mirror 

camera 
RDS platform 

incident laser light 

Figure 3.3.  RDS component configuration and basic geometry. 



44 

coordinates defined in the RDS coordinate frame. The RDS 

frame origin at point FP is based at the camera focal point, 

with the zRDS axis directed toward the object along the camera 

axial axis. This frame is shown in Figure 3.4, along with 

the RDS geometry used for triangulation. Pixel p(x,y),- on the 

CCD image plane corresponds to object point P(x,y,z)RDS and has 

x- and y- components measured in millimeters from the center 

of the image frame. The angle * is computed using the pin- 

hole camera model geometry using 

* = arctan.2( x,-/f ). (3.1) 

The mirror angle, which is controlled by the stepper 

motor driver in half-step mode, is rotated in increments of 

0.225 degrees (measured clockwise in Figure 3.4). The mirror 

datum of 0.0 degrees corresponds to the incident laser sheet 

direction. The angle of reflected light from a mirror equals 

the angle of incident light; therefore, the reflected laser 

sheet is controlled in increments of 0.45 degrees, or double 

the mirror rotation angle. An offset angle of 2.47 degrees 

between the triangle base and the line of incident laser 

light is necessary to realize the complete base angle 6 since 

the focal point FP is not in line with the incident laser 

sheet plane. 

The RDS triangulation for detecting the 3-D coordinates 

of the object point P(x,y,z)RDS, as depicted in Figure 3.4, 

involves a set of basic trigonometric relations. These equa- 

tions are 

d = d, + d2, (3.2) 



45 

pinhole 
camera 
model 

"***W    "x 

aser sheet 

mirror 

Figure 3.4.  RDS geometry for triangulation. 



46 

tan(y+*) = L/d1f and (3.3) 

tan 6 = L/d2. (3.4) 

which combine to yield the equality 

L = d1tan(y+*) = d2-tan 6. (3.5) 

Rearranging equation (3.5) and including equation (3.2) gives 

d, = d-tan 6/{tan(y+*) + tan 6}. (3.6) 

Since triangle side k is expressed as 

k = d1/cos(Y+*), (3.7) 

distance zRDS, which is the depth of point P(x,y,z)RDS along the 

camera z axis with reference to the RDS coordinate frame, is 

represented as 

zRDS = k-cos *. * (3-8) 

By combining equations (3.6), (3.7), and (3.8), 

zRDS = d(tan 6) (cos *)/COS(Y+*) (tan(y+*) + tan 6}. (3.9) 

The xRDS and yR0S coordinates of point P(x,y,z)RDS are determined 

using 

*RDS   =   ZRDS-   <Vf>'    and <3-10> 

YRDS   =   ZRDs(yi/f)- C3'11) 

This completes the range data transformation from image 

coordinates xif yi# and mirror angle 8 to RDS coordinates xRDS, 

yRDS, and zRDS. Thus, the RDS generated range data, i.e. 

P(x,y,z)RDS, are defined with respect to the RDS coordinate 

frame. The AAW workspace, however, is defined by the Adept- 

One robot coordinate frame. To evaluate robot trajectories 

for loading the collar on the vacuum surface, the geometry of 

the collar model must be defined in robot coordinates. Since 

the collar is sensed with the RDS, the resulting range data 



47 

must be transformed to workspace coordinates with a coor- 

dinate transformation determined by calibrating the RDS with 

robot coordinates. 

RDS Integration 

Figure 3.5 shows the RDS positioned in the workstation. 

The distance separating the camera and collar is in the range 

of one meter to maintain both the symmetrical striping capa- 

bility and a full collar view. The one meter viewing range 

is established by the RDS position and the collar presenta- 

tion position which is located overhead the target position 

on the pressing device. This position provides for a short 

robot trajectory to load the collar onto the vacuum surface. 

With the RDS positioned approximately one meter from the 

presented collar position, the RDS platform is located out- 

side the robot workspace. 

To calibrate the RDS coordinate system with respect to 

the robot reference frame, it is necessary for the two sys- 

tems to identify common points in the 3-D workspace. An 

intermediate coordinate frame, which can be identified by 

both systems, is used to transform RDS range data to robot 

coordinates. Figure 3.5 shows an end-effector coordinate 

frame l,EE_frame", which is an intermediate frame between the 

RDS and the robot coordinate system labeled RDS and R re- 

spectively. Since the possibilities for intermediate frames 

are infinite, EE_frame is selected for measurement by the 

calibration pointer which is shown in Figure 3.6. 



48 

'RDS 

-x RDS 

Figure 3.5.  RDS, AdeptOne robot, and workspace. 



49 

Figure 3.6 The end-effector with calibration pointer, 



50 

The calibration pointer, which is detachable, has been 

developed for the end-effector to point to known locations in 

the robot workspace. The pointer has a pointed end whose 

position is known through the robot forward kinematics [17] 

enabling point identification in the robot coordinate frame. 

RDS calibration is accomplished by guiding the pointer 

through a discrete set of points along the axes of an imagi- 

nary intermediate frame EE_frame defined in robot coord- 

inates. The corresponding RDS range data for each point is 

determined by triangulation, and is used to evaluate a homo- 

geneous transformation matrix for converting range data from 

RDS to robot coordinates. Appendix C details this calibra- 

tion process and the matrix algebra involved. The resulting 

relation (C.6) from Appendix C is given by 

V„ = RTB*c * VDne, (3.12) R      RDS     RDS' x      ' 

where VRDS is a position vector in RDS coordinates and VR is a 

position vector in the robot workspace, enabling the system 

to develop the collar model in workstation coordinates. Both 

the collar and target locations are now in a common coordi- 

nate system permitting the robot trajectory to be evaluated 

in AAW workstation coordinates (robot coordinates). 

AAW System Control 

The workstation devices and their respective components 

are controlled by a network of two PC microcomputers and the 

microcomputer-based Adept MCI robot controller as illustrated 

in Figure 3.7. Each computer is dedicated to specific tasks 

within the workstation, and communicates via an RS-232 data 



51 

SYSTEM 
CAMERAS END-EFFECTOR 

AdeptOne 
ROBOT 

VISION 
CONTROLLER 

SYSTEM 
SUPERVISOR 

CAMERA 

RANGE DATA 
SCANNER 

ROBOT 
CONTROLLER 

PRESSING 
DEVICE 

TURNING 
DEVICE 

Figure 3.7.  AAW configuration. 



52 

link. A PC designated the System Supervisor (SS) is respon- 

sible for directing the operation sequence of the workstation 

system. The SS passes data and sends synchronization signals 

to both the robot controller (RC) and the Vision Controller 

(VC) , which is responsible for machine vision hardware and 

software activity. Additionally, the SS controls the input/ 

output operations for proximity sensors and pneumatic actua- 

tors through a dedicated I/O board. Another board dedicated 

for motor control modules controls the stepper and servo 

motor drivers involved in the AAW. All peripheral control 

software and machine vision command software is accessed with 

programs coded in C. 

The RDS is linked to both the System Supervisor and 

Vision Controller. The SS commands the mirror rotation with 

a control module linked to a chopper driver for the mirror 

stepper motor. An SS input port is used to monitor the 

output of a proximity sensor positioned to sense when the 

mirror shaft is at a home position. Additionally, the on/off 

state of the laser is controlled with an SS output signal. 

The camera video output signal is routed to a frame grabber 

board in the VC, enabling the VC to acquire images. Figure 

3.8 illustrates the connection between the workstation compo- 

-nents specifically addressed in this thesis: the RDS, creaser 

blades, vacuum, robot, SS, VC, and RC. 

The scanning activity of laser striping is controlled by 

the System Supervisor, and the machine vision activity is 

conducted by the Vision Controller.  The collar model is 



53 

■ 
RANGE  DATA 

SCANNER 

1 

CAMERA 

LASER 

STEPPER 
MOTOR 

PROXIMITY 
SENSOR 

VISION 
CONTROLLER 

END-EFFECTOR 

PRESSING 
DEVICE 

11 
SYSTEM 

SUPERVISOR 

AdeptOne 
ROBOT 

ROBOT 
CONTROLLER 

Figure  3.8     AAW components  required  for collar loading. 



54 

generated by the VC, an activity involving range finding and 

image processing computations. The VC is additionally re- 

sponsible for the collar frame match discussed in Chapter II. 

The results of the frame match are transmitted to the RC via 

the SS in the form of an error vector. With the error vec- 

tor, the RC develops the robot trajectories for loading the 

collar. 

Image Processing 

Image processing performs the operations to: (1) filter 

an acquired image for laser stripe isolation, (2) scan the 

image for the laser stripe location, and (3) detect the two 

endpoints of the stripe line. For each stripe projected on 

the collar, the above image processing sequence is executed 

by an algorithm to extract the 2-D image coordinates of the 

stripe endpoints. The endpoint locating module of the image 

processing algorithm is restricted to stripes without dis- 

continuities, or gaps, in order to accurately evaluate the 

endpoints. The endpoint data, consisting of x,- and y,- image 

plane coordinates and the mirror angle 6, are used by the 

collar model algorithm to generate a collar model. 

Filtering 

Filtering is implemented to enhance the laser stripe 

apart from the ambient and collar fabric backgrounds. (The 

color of the collar is military green; however, this proce- 

dure is designed for any color collar). The laser source has 

been chosen for its light intensity and non-dispersive 



55 

nature. HeNe laser light is red, with a wavelength of 632 

nm. To enhance the distinct red laser stripe, a red lens 

filter is installed on the camera. The filter passes red 

light and restricts transmission of other colors, performing 

as an optical band-pass filter for red light. This lens 

filter improves the isolation of the laser stripe, but sev- 

eral difficulties remain in distinguishing the stripe from 

the background. 

Since there is red light in the background bright enough 

to pass through the filter, thresholding binarizes the image 

to segregate the bright pixels. Pixels with intensity levels 

above a selected threshold level are "turned on", set to a 

high level of 255; and pixels with intensity levels below the 

threshold level are "turned off", set to 0 intensity level. 

Figure 3.9(a) demonstrates a laser stripe as imaged by the 

RDS camera through a red filter. Figure 3.9(b) shows the 

same stripe after thresholding. Prior to thresholding, the 

laser stripe is primarily constituted of bright pixels; 

however, due to the variability in fabric surface orienta- 

tion, the possibility exists for some of the laser stripe 

pixels to be thresholded low. This causes discontinuities in 

the imaged laser stripe. 

Region Growing 

Several solutions are available to alleviate stripe 

discontinuities. Lowering the threshold level, which also 

thresholds less "noise", is a possibility. Another tech- 

nique, region growing, is a pixel operation which takes place 



56 

(a) red filtered laser stripe 

Egsa«ff-- : 

(b) thresholded stripe 

Figure 3.9.  Line stripe .isolation. 



57 

after thresholding. Region growing involves expanding the 

boundary of a grouped pixel region by a given number of 

pixels. An imaged laser stripe can be considered a region or 

regions of grouped pixels. Region growing fills in the 

discontinuity gaps in the stripe image, providing that the 

gaps are not greater than twice the added boundary thickness. 

A pixel operator works on each pixel in the image plane by 

reassigning the individual pixel intensity value as a func- 

tion of it and its eight neighboring pixel intensity values. 

The region growing operator in this application merely "turns 

on" the pixel if it has a neighboring pixel in the "on" 

state. This results in a boundary growth of one pixel layer, 

which will bridge a maximum gap of two pixels, including 

those gaps measured in a diagonal orientation. 

Figure 3.10 gives a region growing example utilizing 

this binary (on/off) pixel operator. Figure 3.11 shows the 

stripe of Figure 3.9(b) after the region growing operation 

demonstrated in Figure 3.10. To further grow the region, the 

pixel operator can be applied for additional layers (multiple 

applications). Though region growing is valuable, it is time 

consuming and does more than fill gaps: it grows the end- 

points further apart as well as amplify noisy pixels. In 

practice, a balance is required between the threshold value 

and the extent of region growing. A "best" performance 

between, region growing and thresholding has been established 

which insures that the filtered and thresholded laser stripe 



58 

•  •  • 
•  •  • 

• •  • 
• •  • 
• •  • 

gap 

original "on" 
pixels 

region growing 
operator 

region grown 
result 

Figure 3.10 Region growing operator. 



59 

■    -.:':•'..--   V:,X.-r.;--_.^y- ̂ =3x5=^ .._..,.  . ,._.-.. =^g==g3 
J^^S£I=^ 

■ .-" ."■_""..-'--   ...:- -^.-*«=™i 

.     ...'-■            --- -- :—-=--:*.- -■u--a"U^i 

._   '   - -i,=.v ..-. aiHJl 
'  . -..--. v.". .---■.; -*V-<K* 

'■ ---'- 1 
.i.-.-'-g 

■.■".-■.'■- ■v",:i~ ■j 

".■■.'   -r-.-i-X . .  _"     -s 
'.-   >::i-^- "■■.■'r":--"'''.-i"y*::'"^j™ ̂^jnll 

-~-:* mM 

&Ä&@i£i 

1 
f 

Figure 3.11  The region grown stripe of Figure 3.9(b). 



60 

can be "quickly" boundary grown to yield a continuous stripe 

on a blank background. 

Linescan 

The image processing algorithm scans the image for the 

stripe after image conditioning to isolate the continuous 

stripe. A linescan searches a row of pixels sequentially for 

the first "on" pixel. This pixel denotes some portion of the 

stripe border, indicating that the stripe has been located. 

A stripe is not located if the linescan fails to find an "on" 

pixel. In the event of failure, two subsequent linescans are 

attempted until the stripe is located. The subsequent scans 

are 15 pixels above and below the originally designated scan. 

The original scan is designated by a yi-value which corre- 

sponds to a particular row of pixels in the image plane. 

This y,--value is selected experimentally for each mirror angle 

by observing the average y,.-value for the center of the corre- 

sponding stripe projected on the collar. 

Edge Detector 

Once the laser stripe is located by the linescan, an 

edge detector, or "bug" searches for the endpoints of the 

stripe. The bug starts next to the located pixel, and senses 

its way around the boundary of the stripe until it returns to 

its start. The image processing algorithm tracks the travel 

of the bug by its x,- and yi image frame coordinates. Since 

stripes are projected vertically, stripe endpoints exist at 

the pixels with maximum and minimum yj-values. If several 



61 

pixels are discovered with the same y^value at a stripe 

endpoint, an average xs-value is used for the 2-D endpoint 

designation. Figure 3.12 details the journey of the bug 

about the endpoint of a linestripe. To edgefind, the bug is 

programmed to travel in a clockwise manner around the region 

boundary; first by checking to its right; then if needed, 

straight ahead; then if needed, to its left to sense the 

boundary. If the bug is not blocked to advance (no boundary 

sensed), it moves by a pixel in that direction. This process 

is continued pixel by pixel, until .the.bug returns to the 

start. 

Figure 3.13 illustrates with a flowchart the image 

processing algorithm executed for each stripe. Continuous 

stripes are tantamount to accurate stripe endpoints. Noisy 

pixels in the path of a linescan, on the other hand, will 

yield a faulty stripe detection. The key to good laser 

stripe data involves a trade-off between threshold value and 

region growing. 

Collar Model Algorithm Design 

The collar model, which identifies the collar geometry, 

discussed in Chapter II, is largely based on the locations of 

the two collar points. The collar point locations designate 

the base of the quadrilateral used for the collar model. A 

laser striping scheme has been developed to identify the 

collar points utilizing predetermined laser sheet directions 

(the mirror angles 6) and image processing techniques to 

determine the  resulting  laser stripe endpoints.    The 



62 

image plane coordinate frame 

xi 

t 
n 

stripe endpoint edgefinding bug 

linescan for first "on" pixel 

stripe 

Hthresholded "on" pixels 

Figure 3.12.  Linescan to stripe, followed by edgefind bug 
search for stripe endpoints. 



63 

ACQUIRE IMAGE OF LASER STRIPE 

* 

THRESHOLD IMAGE 

* 

REGION GROW OPERATION 

i 
LINESCAN FOR STRIPE 

t 
ACTIVATE EDGEFIND BUG 

* 

SEARCH FOR MAXIMUM AND MINIMUM Y-VALUE PIXELS 
- 

1 
DETERMINE CORRESPONDING X-VALUES TO YIELD STRIPE ENDPOINTS(X,Y) 

Figure 3.13.  Flowchart for image processing algorithm. 



64 

endpoints are used to determine the collar points, and in 

turn, the collar points designate the collar ID_frame. 

Figure 3.14 presents a flowchart which summarizes the collar 

model algorithm. 

Figure 3.15 depicts the general stripe placement and 

order of striping for a typical presented collar. The stripe 

locations per collar depend on the position of the collar in 

the workspace, since the light sheet directions remain con- 

sistent due to predetermined mirror angles. It has been con- 

firmed that the end-effector can retrieve the collar from the 

turning machine with an adequate degree of consistency to 

ensure that the stripes will all be present on the collar, as 

each stripe is necessary in locating the collar points. 

A collar point is defined with three laser stripes as 

shown in Figure 3.15. Each stripe, which is viewed indi- 

vidually on the camera image plane, is defined by the mirror 

angle 6 used to generate the stripe, and its endpoint loca- 

tions which are defined by 2-D coordinates relative to the 

image plane. The maximum y,.-value endpoints for the three 

stripes are used to approximate the local contour of the 

collar border nearest the base of the quadrilateral; and the 

minimum y,--value endpoints are used to approximate the contour 

of the adjoining collar border. These borders, which can" be 

approximated as straight lines, intersect at the collar 

point. A least squares linear regression for the maximum 

endpoints yields an equation approximating the local border 

nearest the baseline, and a second regression for the minimum 



65 

IMAGE  ACQUIRE   £   IMAGE  PROCESSING  FOR  STRIPE   0   (STRIPE   3) 

I 
IMAGE ACQUIRE £ IMAGE PROCESSING FOR STRIPE 1 (STRIPE 4) 

I 
IMAGE ACQUIRE £ IMAGE PROCESSING FOR STRIPE 2 (STRIPE 5) 

I 
LEAST SQUARED LINEAR REGRESSION FOR MINIMUM Y-VALUE ENDPOINTS 

I 
LEAST SQUARED LINEAR REGRESSION FOR MAXIMUM Y-VALUE ENDPOINTS 

I 
DETERMINE  INTERSECTION OF  TWO REGRESSION EQUATIONS 

I 
EXTRAPOLATE FOR MIRROR ANGLE 6 

I 
RANGE DATA FOR LEFT COLLAR POINT (RIGHT POINT) 

TRANSFORM COLLAR POINTS TO ID frame PLANE 

I 
ASSIGN ID frame 

Figure 3.14.  Flowchart for collar model algorithm. 



66 

image plane coordinate frame 

major stripe for right point 

major stripe for left point 

projected laser stripe 

Figure 3.15.  Stripe placement for a presented collar. 



67 

endpoints yields an equation approximating the adjoining 

border. By solving the simultaneous line equations, an 

intersection is determined which approximates the collar 

point. Figure 3.16 shows the regressions and resulting 

intersection for the left collar point. This intersection is 

a 2-D estimate of the collar point, but a 3-D location is 

required. The required third dimension is a function of the 

mirror angle, since the RDS provides range data for points 

defined by x- and y? image frame coordinates and a correspond- 

ing laser sheet projection angle 6 as given by equations 

(3.9), (3.10), and (3.11). 

Since a stripe has not been displayed at the line inter- 

section, and indeed, very likely cannot be projected in this 

precise direction due to the resolution of the stepped mirror 

rotation, angle 6 is estimated. The mirror resolution corre- 

sponds to approximately a 1/4 inch minimum stripe spacing for 

a typical collar one meter from the RDS. An estimate for 

angle 6 involves extrapolating data from the three existing 

stripes to derive the theoretical fractional rotation re- 

quired for the mirror to project the laser sheet through the 

2-D intersection, designating the actual collar point. 

Figure 3.17 demonstrates the method for extrapolating the 

required stripe location and hence the angle 6 to complete 

the collar point identification. 

Two stepper motor half-steps geared to the mirror rota- 

tion are used for spacing the stripes; these half-steps which 

cause a change in angle 6 are correlated to the measured 



68 

*i collar point contour 

major stripe 

stripe endpoint identification 

V 

linear regression for minimum yr-value endpoints 

linear regression for maximum y-value endpoints 

intersection: left_point(x,y); 

Figure 3.16.  Left collar point approximation. 



69 

collar point contour 
*i 

distance between stripe lines 

V 
theoretical stripe location 

7 

left_point(x,y). 

major stripe 

distance between left_point(x,y)j and major stripe 

"maj 

Figure 3.17. Extrapolation for corresponding stripe position. 



70 

spacing Sa and <Sb between the imaged stripes. A ratio between 

half-steps and stripe separation is determined for each 

subsequent stripe pair and averaged to give a ratio r between 

change in mirror angle and change in image plane stripe 

location using the equation 

r = 4 / {Sa + Sti} (half-steps/mm). (3.13) 

Finally, the perpendicular distance Sm-} between the line 

intersection left_point(x,y),- and the major stripe is deter- 

mined and correlated in fractional half-steps to yield the 

desired angle 6 using the equation 

6 - 6maj " <5maj r>     (half-Steps) , (3.14) 

where 6^. is the mirror angle used to project the major 

stripe, or stripe 2. The x,., y^, and 6 values are triangulat- 

ed with RDS geometry to estimate the 3-D location for a 

collar point. The same operation is employed for the right 

collar point with a sign change in Equation (3.14) to reflect 

the change in orientation of right_point(x,y), with respect to 

the right point major stripe (stripe 3). 

6 " emaj + <Wr>    (half-steps). (3.15) 

The RDS collar point coordinates are converted to robot 

coordinates for the collar model, which is defined in robot 

coordinates. A coordinate frame ID_frame is assigned to the 

collar model to identify the collar location in the work- 

space. ID_frame is determined for the collar using the quad- 

rilateral wireframe model positioned parallel to the work 

surface. The parallel collar position requires the 3-D 

collar point positions, which are in robot coordinates, to be 



71 

rotated about the collar axis of rotation (the swing line 

previously shown in Figure 2.2) until the wireframe model is 

parallel with the work surface. Following this transfor- 

mation to place all four corners of the quadrilateral in a 

plane parallel to the vacuum surface, the ID_frame origin is 

calculated equidistant from the collar points with the frame 

axes aligned as previously described in Figures 2.2 and 2.6. 

The ID_frame assignment concludes the collar model algorithm. 

The Frame Match and Robot Trajectory 

A flowchart for the frame match and robot trajectory 

operations is given in Figure 3.18. The target_frame depict- 

ed in Figure 3.19 identifies the destination on the vacuum 

surface corresponding to the ID_frame of a collar to be 

loaded. This coordinate frame is located equidistant from 

the creaser blade tips when in the extended position. The 

extended blade tip positions are measured for 3-D coordinates 

with the calibration pointer to obtain the invariant tar- 

get_frame position. 

Both target_frame and ID_frame coordinate frames are 

referenced to the robot frame. A comparison of the frame 

locations in the workspace yields a translation and rotation 

difference which refers to the position error (Ax,Ay,A6) be- 

tween the coordinate frames. The error in the zR direction 

remains consistent for every collar since the parallel planes 

have a constant displacement between the gripper tips and 

vacuum surface.  The linear Ax, Ay, and the rotational A6 



72 

VC: COMPARE ID_frame WITH target frame 

I 
VC: GENERATE ERROR VECTOR DELTA(AX, AY, A6) 

T 
SS: RECEIVE ERROR VECTOR FROM VISION CONTROLLER 

• 

! 

SS: PASS ERROR VECTOR TO ROBOT CONTROLLER 

RC: ASSEMBLE ROBOT TRAJECTORY 

I 
RC: LOAD COLLAR ON VACUUM SURFACE 

Figure 3.18.  Flowchart for frame match and robot trajectory 
operations. 



73 

target_ 

direction 

extendable creaser 
blades 

Figure 3.19.  ID_frame and target_frame assignments. 



74 

displacement in the x-y robot plane are variable and depen- 

dent on the generated collar model using the equations 

Ax = target_xR - ID_xR, (3.16) 

Ay = target_yR - ID_yR,   and (3.17) 

A0 = target_6R - ID_6R, (3.18) 

with all coordinates for the target and collar model frames 

referenced to the robot (R) coordinate frame. 

The robot trajectory is essentially designed to "compen- 

sate the position error" or load the collar on the vacuum 

surface. Rather than simply command the robot to move the 

collar in a straightline trajectory from ID_frame to tar- 

get_frame and render the wireframe model inaccurate, the col- 

lar is placed on the vacuum surface in a semi-predefined 

manner which is demonstrated in Figure 3.20. Figure 3.20 

shows a sequence of robot and end-effector positions in the 

robot y-z plane along with the corresponding scaled incremen- 

tal displacement vectors. These positions are labeled to 

correspond with the robot trajectory points produced by the 

robot controller source code, which is given in Appendix E. 

Position loc[12] is the robot and end-effector position 

for the collar during the laser stripe scan by the RDS for 

range data. After the collar is scanned, the model generat- 

ed, and the error vector passed to the robot, the robot 

controller develops the following progression of robot points 

designating the loading trajectory. The robot moves to posi- 

tion altl3 while the end-effector simultaneously pitches 

forward (as shown), performing a rotation about the collar 



75 

© IOC[12] 

collar prior to loading 

end-effector grippers 

vacuum surface 

Collar 
^-^ Loading 
(2) alt13, rotateH Sequence 

robot 
trajectory 

; ; / ; 
robot coordinate frame 

0 cart15 

]    © cart17 

(x)  Robot move 

Figure 3.20. Robot trajectory to load collar (AAW sideview). 



76 

swing line. This move preserves the invariant zR error dis- 

placement between.gripper tips and vacuum surface. The robot 

wrist next rolls the end-effector about the ID_frame zID axis 

by a negative A6 rotation to eliminate the rotation error. 

The linear Ax and Ay errors are then compensated with a 

robot move to position cartl5, which includes part of the zR 

error displacement to place the bottom collar ply opening on 

the vacuum surface. At this time, the vacuum is drawn 

through the vacuum surface holding the open side of the 

bottom ply in place. Although the net Ay displacement is 

determined by equation (3.17) and implemented with cartl5, 

additional predetermined yR offset components are utilized in 

positions cartl5, cartl6, and cartl7 to properly manipulate 

the collar to the work surface. The yR and zR predetermined 

components, which are determined experimentally, are inte- 

grated to enable the collar to be loaded without wrinkles 

signifying that it is loaded according to the wireframe 

model. The robot moves to position cartl6 allowing the col- 

lar points to "lock" into position on the vacuum surface, and 

permitting the end-effector to flatten the collar against the 

vacuum surface for maximum draw on the outer opening of the 

collar pocket. This provides the widest possible collar 

opening for the creaser blades to insert. The final load 

position cartl7 reopens the collar pocket to create a clear- 

ance between the blade surface and the collar top ply, as 

previously shown in Figure 2.7. In this position, the collar 

is loaded and ready for creaser blade insertion. 



77 

Summary of the System Operation Process 

Loading a collar on the pressing device requires (1) the 

RDS to sense the presented collar, (2) the Vision Controller 

to construct a collar model and determine the collar position 

and orientation error, and (3) the Robot Controller to gener- 

ate an appropriate robot trajectory for the robot to load the 

collar. The operational sequence for this task is directed 

by the System Supervisor. Figure 3.21 presents a flowchart 

to describe the complete system sequence of operation for 

sensing and loading a collar. 

After the robot presents the collar to the pressing 

station,, the RC signals the SS to begin laser stripe scanning 

on the collar. The SS, in turn, synchronizes mirror rotation 

commands with the image processing of the VC. Following the 

scanning sequence, a mathematical collar model is constructed 

by the VC with the stripe information and the collar model 

algorithm. Using the collar model, the VC assigns an ID- 

_frame to the collar, and compares the ID_frame with the 

invariant target_frame to obtain a displacement error vector 

between the collar and target location in robot coordinates. 

The error vector DELTA(Ax,Ay,A6) is passed via an RS-232 link 

to the SS. The SS relays the unchanged vector to the RC, 

which uses the information to assemble an appropriate robot 

trajectory. The collar is then loaded on the vacuum surface 

by a synchronized RC and SS sequence. 

The robot incorporates the error information in two 

moves, rotatel4 and cartl5, prior to placing the collar 



78 

RC: 

SS: 

VC: 

SS: 

VC: 

SS: 

VC: 

VC: 

VC: 

VC: 

RC: 

SS: 

RC: 

PRESENT  COLLAR 

T 
ROTATE MIRROR TO STRIPE 0 (3) POSITION 

ACQUIRE STRIPE & IMAGE PROCESS 

I 
ROTATE MIRROR TO STRIPE 1 (4) POSITION 

ACQUIRE STRIPE & IMAGE PROCESS 

I 
ROTATE MIRROR TO STRIPE 2 (5) POSITION 

ACQUIRE STRIPE & IMAGE PROCESS 

I 
EVALUATE LEFT (RIGHT) COLLAR POINT 

GENERATE COLLAR MODEL 

I 
VC:   ASSIGN ID_frame AND COMPARE TO target_frame 

GENERATE ERROR VECTOR: DELTA(AX, AY, A9) 

I 
ASSEMBLE ROBOT TRAJECTORY 

RC:  POSITION COLLAR BOTTOM PLY ON VACUUM SURFACE 

I 
ACTIVATE VACUUM 

T 
LOAD COLLAR ON VACUUM SURFACE 

Figure 3.21   Flowchart for complete sensing and loading 
operation. 



79 

points on the vacuum surface. The bottom ply touches the 

vacuum surface with the move to position cartl5 at which time 

the vacuum is applied by SS control. The robot completes the 

loading trajectory through predetermined positions cartl6 and 

cartl7 to guide the collar into its final position, preparing 

it for creaser blade insertion during which the vacuum draw 

is maintained. The robot holds the collar open until the 

creaser blades are inserted and extended. Prior to the 

creaser blade activity, however, the operation sequence is 

returned to SS control to. begin the pressing station sequence 

[21] which includes the creaser blade insertion and exten- 

sion. 



CHAPTER IV 

PERFORMANCE EVALUATION 

Successful collar loading relies on the combined accu- 

racies of the hardware and software components used for 

sensing the collar, generating the collar model, and deter- 

mining the robot trajectory. Two system components are para- 

mount to insuring successful collar loading: (1) the RDS for 

accurate range data, and (2) the collar model algorithm for 

accurate estimation of the collar points. Both the RDS and 

the collar model algorithm perform functions which identify 

points in the AAW workspace. The RDS measures range data 

points, and the collar model algorithm estimates the 

3-D collar point positions. Each method for designating 3-D 

points features an error between measured or estimated posi- 

tion and the actual position. An error analysis is performed 

for both the RDS and collar model algorithm to analyze the 

accuracy of the system. 

A measurement error e is composed of two components: (1) 

a bias error e, and (2) a precision error ae. These two error 

components combine to give the measurement error e based on 

the equation 

e = e ± ae. (4.1) 

The bias error remains constant during a given series of 

measurements under fixed operating conditions. Thus, in a 

series of repeated measurements, each measurement contains 



81 

the same amount of bias. Bias error can be estimated by 

comparison and is. determined by calibration or with concomi- 

tant methods utilizing different physical measurement princi- 

ples [18]. The bias error e is determined as the mean of the 

measurement errors e{ for n sample points by using equation 

(4.2). 

n 

Eei (4.2) 
e - -i=^—. 

n 

Precision error is the scatter of measurement values about 

the bias error. Repeatability and resolution in the mea- 

surement system are represented by the precision error. The 

precision error ae is determined by the standard deviation of 

the measurement errors e{ for n sample points using equation 

(4.3). 

oe - sdev(ei) 
> 

E <ei-e)2 (4-3> 
i-l 

n-1 

Range Data Scanner Accuracy 

The pinhole camera model, mirror resolution, RDS plat- 

form geometry, and image resolution all contribute to the 

accuracy of RDS range data measurements. Several of these 

parameters are more sensitive than others in terms of RDS 

accuracy. For example, the linear pinhole camera model does 

not account for lens aberration, which causes non-linearities 



82 

in the calibration of the image plane [19]. An uncertainty 

analysis for the RDS components including the camera model is 

given in Appendix B. Appendix C presents the integration of 

the RDS into the AAW and addresses the complexity involved in 

accurately calibrating the RDS to the robot coordinate sys- 

tem. This section evaluates the accuracy of the calibrated 

RDS as it performs in the workspace by investigating the 

error in range data measurements. 

The calibration pointer was used to calibrate the RDS 

with the robot coordinate system, and create a transformation 

between RDS coordinates and robot coordinates as given by 

equation (3.12). A series of points in the workspace are 

individually measured by both the pointer/robot system and 

the RDS to evaluate the accuracy of the RDS as it is used in 

the workstation. The measurement procedure is executed by 

first positioning the pointer with the robot, and then using 

the RDS to locate the pointer tip position in 3-D space. 

This is demonstrated in Figure 4.1, which shows the end- 

effector with the laser stripe through the pointer axis. The 

resulting 3-D measurements for these points are compared to 

yield an accuracy of the RDS. The robot coordinates are 

transformed to RDS coordinates prior to the comparison to 

investigate the error results in reference to the camera 

coordinate frame, which is identical to the RDS coordinate 

frame. 

The points are selected from three localized regions, 

representing the volumetric workspace of measurement as shown 



83 

Figure 4.1. Calibration pointer with laser stripe through the 
pointer tip. 



84 

in Figure 4.2. Since the RDS is used to measure the collar 

point positions, two regions of measurement are concentrated 

in the left and right collar point areas. The other region 

is located central to the two regions closely corresponding 

to the intermediate coordinate frame (EE_frame) used for 

calibrating the RDS with the robot as shown in Figure 4.2. 

Though the pointer has itself undergone a calibration 

procedure and is considered accurate to within ±0.5 mm due 

primarily to the end-effector pitch motion [17], it is con- 

sidered the reference measurement to which the RDS measure- 

ments are compared. Therefore, measurement differences 

comparable to the error e of Equation (4.1), are evaluated 

per point by their error components as 

Ax = xRDS - xRobot, I   •   ) 

^ - YRDS ' YRobof'   and (4*5) 

AZ   -   ZRDS   "   ZR0b0f (4*6) 

Each of the errors Ax, Ay, and Az contain bias and precision 

error components. Figure 4.3 illustrates a geometric model 

describing the error components for this error analysis. An 

ellipsoid represents the bounded precision error of the RDS 

measurement offset by bias error from the measured location 

of the calibration pointer. A sphere is used to describe the 

±0.5 precision of the calibration pointer. Table I presents 

the bias and precision errors calculated from the comparison 

between the RDS and robot measurements of common points in 

the three regions. 



85 

70 mm 

robot frame 

intermediate frame 

Central region 

RDS frame 

FVRDS 

Figure 4.2.  Left, Central, and Right common point regions. 



86 

Ay precision error 

ellipsoid approximating 
precision of RDS measurement 

Ax precision error 

RDS FP 

y   1 

RDS 

Az precision error 

Ay bias error 

r~?\. — sphere of precision 

]OC^\ for calibration pointer 

I ^- 1 mm pointer precision error 

*— Ax bias error 

Figure 4.3.  Three-Dimensional representation of bias and 
precision error. 



87 

TABLE I 

BIAS AND PRECISION ERRORS IN MEASUREMENT 
FOR COMMON POINTS MEASURED BY BOTH RDS 

AND ROBOT CALIBRATION POINTER 

Region Ax error 
mm 

Ay error 
mm 

Az error 
mm 

LEFT 
8 samples 

bias: 

precision: 

3.38 

1.35 

1.58 

0.66 

-5.58 

2.24 

CENTRAL 
8 samples 

bias: 

precision: 

0.62 

0.46 

2.35 

0.71 

-1.55 

1.57 

RIGHT 
8 samples 

bias: 

precision: 

-4.19 

1.07 

3.95 

0.61 

2.16 

2.45 



88 

The component bias errors are smallest for the central 

region, which is close to the intermediate frame location 

(EE_frame) used for RDS calibration. The smaller bias errors 

of less than 3 mm indicate that the calibration is most 

accurate in the center of the image frame, which corresponds 

to the central region. Two sources of error are present 

which explain the inconsistency in bias error: (1) camera 

lens aberrations, and (2) inaccurate RDS calibration. Lens 

aberrations distort the image with the barrel effect [19] to 

give the poorest image replication about the image perimeter. 

Calibration error, on the other hand, involves an inaccurate 

transformation matrix used to convert RDS to robot coordi- 

nates. 

The component bias errors (Ax,Ay,Az) were examined for 

trends to evaluate a cause for the measurement error. For 

each of the component bias errors, a pattern exists where the 

bias error values of the left and right region bound the 

central region bias error. Additionally, the bias error for 

the central region is approximately the average of the other 

bias errors. For example, the Az bias errors for the left 

and right sides are -5.58 and 2.16 mm respectively, and 

average -1.71 mm. The Az bias error of the central region is 

-1.55 mm, which is close to the -1.71 mm average. A.correla- 

tion is therefore exhibited which can be explained by a skew 

in the orientation of the calibration transformation matrix, 

implying that inaccurate calibration is primarily responsible 

for the bias errors.  Since lens aberration effects are non- 



89 

linear, they are not the dominant cause for the bias error in 

these measurements. 

The relatively low precision errors indicate that the 

system is repeatable, and could be tuned through further 

calibration to yield improved results. The precision errors 

ranged between 0.46 and 2.45 mm, with the measurement along 

the depth axis (or Az error) the least precise. This is ex- 

pected from a system that uses a 2-D camera for depth percep- 

tion. 

Collar Model Accuracy 

The accuracy of the collar model is partially dependent 

on RDS accuracy to give good range data measurements for the 

estimates of the collar points. Thus, there is a propagation 

of errors, or an accumulation of error, in the collar model 

since the collar model algorithm utilizes RDS measurements. 

The collar model accuracy also depends on how well the collar 

model algorithm predicts the collar point locations with the 

line striping and image processing procedures. 

Eight collars were cycled through the workstation to 

test for collar model accuracy. Since line striping and 

collar model generation occur while the collar is in the 

presentation position shown in Figure 4.4(a), which corre- 

sponds to the robot position loc[12], the locations of the 

collar points were marked with an external device designed to 

physically identify the collar points before the collar was 

moved to the next position. This device is shown in Figure 

4.4. The workstation cycle was discontinued following collar 



90 

(a) device marks the location 
of the presented collar points 

(b) calibration pointer positioned 
to measure the marked location 

Figure 4.4.   Device for physically identifying presented 
collar points. 



91 

placement on the vacuum surface to preserve the collar point 

locations on the surface. 

The calibration pointer was used to obtain reference 

measurements for the collar points by pointing to the marked 

locations designating the previous collar point positions as 

shown in Figure 4.4(b). The measured collar point locations 

were used to determine the ID_frame location, which is locat- 

ed equidistant between the collar points. A comparison be- 

tween the collar model predicted and the robot measured 

ID_frames was conducted similar to the analysis for RDS accu- 

racy. Bias and precision errors were evaluated for an esti- 

mate of collar model accuracy. 

A visual means for studying the collar model error is 

also available by viewing the camera monitor in addition to 

the physical measurement errors. Striping, filtering, and 

region growing is seen on the monitor as it occurs. Follow- 

ing the striping (three stripes) for each point, a small 

circle is drawn on the monitor at the 2-D location of the 

estimated collar point corresponding to left_point(x,y),-, or 

right^oint^y)^ as depicted in Figure 4.5. By comparing 

the location of the circle center with the image of the 

collar point, the 'viewer can qualitatively evaluate the 

performance of the collar model algorithm. Figure 4.6(a) 

shows a collar model image as seen on the monitor, and Figure 

4.6(b) shows the model superimposed on the original collar 

image. Qualitatively, the collar model favorably predicts 

the collar point locations. 



92 

image plane coordinate frame 

major stripe for right point 

major stripe for left point 

left_point(x,y). 

projected laser stripe 

©/Hi/-"                                   V 
O/V 
®/\V 

right_point(x,y). 

Figure 4.5.  Two-Dimensional left_point(x,y), and 
right_point(x,y)j estimated by collar model algorithm. 



93 

(a) collar point estimates generated by 
the collar model algorithm 

(b) collar model superimposed on original collar image 

Figure 4.6.  Example of collar model. 



94 

Table II presents the bias and precision errors deter- 

mined by the comparison between collar model predicted and 

robot measured ID_frames for the eight collars sampled. The 

error values were obtained with Equations 4.1-4.3. The 

errors listed in Table II are due in part to the propagation 

of RDS calibration and pointer measurement errors, and the 

remainder is due to error in the collar model. The collar 

model component of error is a direct result of the collar 

point 2-D estimates, left_point(x,y),- and right_point(x,y),, 

and the extrapolation for the mirror angles (6) necessary to 

obtain 3-D estimates for the collar points. 

TABLE II 

BIAS AND PRECISION ERRORS IN THE MEASUREMENT 
OF ID_frame MEASURED BY BOTH THE COLLAR 

MODEL ALGORITHM (RDS) AND THE 
ROBOT CALIBRATION POINTER 

Region Ax error 
mm 

Ay error 
mm 

Az error 
mm 

ID_frame 
8 samples 

bias: 

precision: 

0.27 

0.86 

5.73 

0.85 

2.17 

2.02 



95 

The Ax bias error is similar to that of the RDS accuracy 

analysis, both less than 1 mm; but the respective Ay and Az 

bias errors are both different by approximately 3.5 mm. This 

difference is attributed to the collar model point estimates. 

Figure 4.7 gives an example of a collar model superimposed on 

the original collar image which illustrates the inaccuracy in 

the algorithm. The point estimates do not comply with the 

actual collar points. These inaccurate estimates are respon- 

sible for the Ay and Az bias errors; there is no resulting Ax 

bias error since the individual collar point Ax bias errors 

are in opposing directions and are averaged to a small value. 

This trend displayed in Figure 4.7 was observed for a majori- 

ty of the eight sampled collars, and is.caused by several 

stripe endpoints that do not coincide with the collar con- 

tour, which in effect, yields a regression intersection that 

does not match the collar point. 

The precision errors for Ax and Ay were less than 1 mm, 

and was 2 mm for Az suggesting that the collar model algo- 

rithm is repeatable in its collar point estimations. This 

repeatability indicates that the 3-D collar point estimations 

could be tuned with compensating offsets equal to the compo- 

nent bias errors in the respective component directions to 

yield a consistently better collar model accuracy. However, 

prior to compensating for bias errors or symptoms, the source 

of the problem involving the stripe endpoint approximation of 

the collar contour should be improved. Due to the limited 

set of data taken, the reported ranges for precision error 



96 

Figure 4.7.  A collar model which demonstrates inaccurate 
point prediction. 



I 
1 
1 
I 
I 

I 
I 

1 
I 
I 
I 
I 
1 
I 

97 

refer to a confidence level of approximately 75%. This 

confidence level reflects a limited statistical basis for 

specifying system performance. The use of student t-dis- 

tribution statistics suggests that twenty or more samples are 

required to attain a 95% confidence level. 

Collar Loading Accuracy 

M The collar is loaded on the vacuum surface with the 

collar points located to conform to the fixed geometry of the 

creaser blades to be inserted and extended. The collar point 

locations for eight collars were measured with the robot 

calibration pointer subsequent to being loaded on the vacuum 

■ surface as shown in Figure 4.8. The robot pointer measure- 

ments were compared with the target positions for the collar 

W points which coincide with the creaser blade tip locations 

m when the blades are in the inserted and extended position. 

The target points serve as the reference locations to 

■ which the robot calibration pointer measured locations are 

compared. Collar placement on the vacuum surface is variable 

in the xR and yR dimensions; the zR dimension is constrained by 

the vacuum surface. The component errors are evaluated for 

two dimensions per point using 

Ax   =   Xcollar_point   ~   Xblade_tip'    and (4'7) 

Ay   =   yCollar_point   "   Vblade_tip' (4,8) 

giving the error an orientation with respect to the robot 

coordinate system. Additionally a magnitude error is evalu- 

ated with 



98 

Figure 4.8.  Collar positioned on vacuum surface. 



99 

E !• I VAx2+Ay2 I <4-9) 

for the measured difference between collar point and respec- 

tive blade tip. 

Table III summarizes the bias and precision errors 

measured between collar points located on the vacuum surface 

and their target positions. All eight collars were good 

candidates for creaser blade insertion, suggesting that the 

pressing machine is capable of handling a placement tolerance 

exceeding 5 mm, the precision for the magnitude error E. The 

Ax and Ay bias errors represent errors from two sources: (1) 

the collar model algorithm, whose frame match introduces 

error caused by an inaccurate ID_frame assignment, and (2) 

the friction which exists between the unmodeled bottom ply 

and the vacuum surface when the collar first makes contact 

prior to the vacuum draw. There is also a component of 

measurement error in the measured creaser blade tip locations 

owing to the calibration pointer. Figure 4.9 illustrates the 

average loaded collar position in reference to the target 

location. The average position is established by the compo- 

nent bias errors. The resulting collar skew is due to a bias 

error in the A0 component of the error vector DELTA- 

(Ax,Ay,A6), which is a function of the modeled collar point 

locations. It is important to note that as the creaser 

blades are extended in the collar pocket, they self align the 

collar and collar points to conform to the fixed geometry of 

the pressing workstation. This results in a correctly posi- 

tioned collar for edge creasing and pressing. 



,\ \ \ \ \ 

'VR 

100 

5.37 mm 

collar target location on vacuum surface — 

averaged collar location 

i    2.83 mm 

_target_frame 

quadrilateral base 

scale: 1/3 

Figure 4.9.  Average loaded collar position versus target 
position. 



101 

TABLE III 

BIAS AND PRECISION ERRORS FOR THE MEASUREMENT 
BETWEEN LOADED COLLAR POINTS AND RESPECTIVE 

EXTENDED CREASER BLADE TIP POSITIONS 

Region Ax error 
mm 

Ay error 
mm 

AE error 
mm 

LEFT 
8 samples 

bias: 

precision: 

1.10 

0.85 

5.37 

3.44 

5.46 

3.82 

RIGHT 
8 samples 

bias: 

precision: 

4.67 

1.18 

2.83 

2.11 

5.21 

4.31 



102 

System Speed 

System speed is integral to successful automation. The 

collar loading operation is divided into six distinct time 

segments for a total process time of approximately 22 seconds 

dependent on the robot speed. The computational efforts of 

line striping, collar model generation, and error vector 

passing, which account for the VC controlled contribution to 

collar loading, are performed in 16 to 18 seconds of the 22 

second time sequence. 

The physical line striping operation is controlled by 

the System Supervisor in parallel with the vision processing, 

and does not contribute to the time involved in generating 

the collar model. The image processing for each stripe takes 

slightly less than 2.5 seconds. Of the 2.5 seconds process- 

ing time, region growing accounts for 1.5 seconds, the line- 

scan and edgefind bug algorithm takes between 0.6 and 0.8 

seconds, and the computation time for diagnosing the stripe 

requires the remaining time. Thresholding is performed by a 

look up table (LUT) operation in the vision hardware that 

occurs once during every vertical sync signal to the monitor. 

This operation requires no processing time. At six stripes 

per model, and nearly 2.5 seconds per stripe, less than 15 

seconds is required to acquire and compile the stripe infor- 

mation for the model. The more than one second of remaining 

time is used to evaluate the collar point locations and pass 

an error vector to the SS. 



103 

The message passing is conducted at 1500 characters per 

second (cps) , using less than 0.5 seconds for the error 

vector to pass between the VC to the RC via the SS. The 

robot trajectory generation also requires less than 0.5 

seconds. The remaining process time is consumed by the robot 

motions required to load the collar. Since the robot speed 

is specified by the operator, the total time for collar load- 

ing with the existing system using velocities of 20 ips would 

take about 20 seconds. 

System Operation 

The fully automated AAW workstation is designed to 

accept bundles of stacked unturned collars and process them 

individually with a turning and pressing operation. At 

present, the process time for the AAW to retrieve, turn, and 

prepare an individual collar for pressing is 1 minute and 35 

seconds. The time to accomplish the same task for an experi- 

enced operator with a manually operated pressing machine is 

45 seconds. The AAW process time, however, is hampered by 

temporary "wait" and "pause" statements in the control code, 

and has not yet been improved with faster robot, end-effec- 

tor, or workstation device speeds. The system has the poten- 

tial for speeds comparable to that of the human operator. A 

videotape is available that demonstrates the functional 

operation for the complete AAW system. The 3-D sensing of 

the turned collar is presented along with the visual activity 

displayed on the monitor during the process. 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

A 3-D vision range finder has been implemented in a 

workstation dedicated for turning and pressing shirt collars 

to demonstrate its usefulness for apparel material manipula- 

tion. The range finder system, or Range Data Scanner (RDS), 

has been developed to perform three-dimensional vision sens- 

ing or depth location of the collar geometry for creating a 

geometrical collar model for material handling. The collar 

model is used to generate the robot motion trajectory for 

properly positioning the collar on a pressing work surface. 

The system is successful in loading collars within a 

range acceptable for proper creaser blade insertion on the 

pressing workstation. The vision sensor compensates for 

collars which are retrieved from the turner skewed and offset 

relative to the end-effector by as much as ±3 degrees, indi- 

cating that the wireframe quadrilateral collar model is 

effective and adequate for collar placement. The collar is 

loaded on the vacuum surface with the points accurate to 

within 5 mm of their target locations, and a precision of 4 

mm, which is within the 11 mm tolerance available between the 

collar opening and the creaser blade assembly to be inserted. 



105 

These accuracy and precision values encompass the errors 

propagated by both the Range Data Scanner and the collar 

model algorithm, which are both critical in estimating the 

collar geometry for placing the collar on the vacuum surface. 

The precision for the collar model, which includes the propa- 

gated RDS precision error, is approximately 2 mm, implying 

that the system is repeatable. The difference in collar 

model and collar loading precision is due primarily to the 

unmodeled bottom collar ply and its interaction with the 

vacuum surface. 

The speed of the collar locating and positioning process 

is approximately twenty-two seconds and represents the capa- 

bility of the vision equipment used. With an increased robot 

speed of 20 ips, this time is reduced to about twenty sec- 

onds. Twenty seconds is comparable to the time taken by a 

human operator to perform the same function in a repeatable 

and consistent way. Thus, the potential for 3-D vision sens- 

ing for applications in apparel assembly is demonstrated. 

It is important to recognize that the AAW will perform 

collar loading satisfactorily without 3-D vision sensor 

information. This is due to the regularity in collar re- 

trieval by the robot from the turning machine, and proved by 

the statistical analysis of the collar position measurements 

acquired by both the robot and RDS. Without the 3-D vision 

sensing operation, collar turning and pressing can be per- 

formed in less than 1 min. 15 sec. by the AAW. 



106 

This research has demonstrated the potential for using 

three dimensional vision sensing for flexible material han- 

dling and shown that 3-D vision sensing is a viable technol- 

ogy for the apparel industry. The currently designed 3-D 

vision sensing system is not required for direct implemen- 

tation of the AAW on the factory floor. However, the appli- 

cation demonstrates that an apparel research knowledge base 

has been developed for 3-D vision sensing which is available 

for other advanced or appropriate factory floor applications. 

An example of such a system is Nakamura's 3-D sewing system 

which uses stereo vision to guide a compact sewing machine to 

sew fabrics in a 3-D workspace [23]. Domey [15] also uses 

3-D vision sensing to enter object geometric data into a CAD 

system to create a surface profile database for the design 

and inspection of garments. 

Recommendations 

System speed requires the most improvement for applica- 

tion of this system in an industrial setting. The speed 

could be improved with a VME-based computer workstation, 

which has an architecture more suited for real-time control 

applications as compared to the SS microcomputer. The Adept 

MCI controller might also be employed for this purpose since 

it is a workstation controller, and is not limited to robot 

control. Difficulty would be involved, however, in integrat- 

ing the versatile Data Translation vision system with the MCI 

controller. A PC would be required, involving the communica- 

tion burden that exists with the SS computer.   Image 



107 

processing the individual stripes with parallel processing 

would significantly reduce the time taken by the vision 

process. 

The system accuracy is satisfactory for this applica- 

tion, however, other applications such as guiding a sewing 

head in a 3-D workspace will require better accuracy. Bias 

error in the range data measurements could be improved with 

further attention to the calibration of the camera in work- 

station coordinates. The calibration approach used for this 

research, as described in Appendix C, could be implemented 

several times to obtain a statistical sample leading to a 

"best fit" transformation matrix. Another approach would 

consider localized calibrations corresponding to mapped re- 

gions in the workspace, with individual calibrations for each 

collar point region that effectively eliminate the respective 

bias errors. A calibration method which does not involve the 

end-effector pitch motion would reduce the calibration point- 

er precision error of ±0.5 mm (±20 mil) to the robot preci- 

sion error of ±1/40 mm (±1 mil); a pointer directly attached 

to the robot wrist would provide this improved precision. 

The collar model for estimating collar point locations 

can be improved using more stripe data per collar point. 

Additional data would enhance the collar model linear regres- 

sion analyses, which in turn may improve the collar point 

contour and give a better approximation for the contour 

intersection. Increased data also permits higher order 

regressions  for  the  collar  point  contours  which  is 



108 

appropriate since the collar point contours are not linear. 

By projecting more stripes and involving more complex compu- 

tation, however, the time used for generating the collar 

model geometry is increased. Sato's method of space encoded 

range imaging could be utilized to gain considerably more 

range data per period of time [12], and perhaps evaluate the 

collar points faster. 

The driving factors in designing manufacturing equipment 

for the apparel industry must be to keep it simple and low- 

cost. Sophisticated vision capabilities for automating 

manufacture of apparel may not be cost effective, but it may 

be prudent to design apparel assembly processes with some 

level of vision capability when possible. Binary vision and 

proximity sensor devices are available which could provide 

enhanced machine performance capabilities. 

Numerous opportunities exist for future research in 

vision sensing of flexible apparel materials. For example, 

more advanced mathematical models for apparel workpieces are 

necessary to understand the fabric surface profile and its 

behavior for robotic handling and processing. Another area 

involves real-time control for fabric manipulation with visu- 

al feedback. The research project for guiding a sewing head 

about 3-D seam contours, which is parallel to vision guided 

welding, will establish both real-time machine vision strate- 

gies and modern control techniques for the apparel community. 



APPENDICES 



110 

Appendix A 

Equipment Specifications 

HeNe Laser 

Manufacturer: 

Part Number: 

Description: 

Range Data Scanner Components 

Aerotech Inc. 
101 Zeta Drive 
Pittsburgh, PA 15238 
(412) 963-7459 

HeNe 210R 200 Series Laser 

1 mW randomly polarized laser head with flying 
leads, 12 VDC, 0.64 mm beam diameter, 1.27 
mrad beam divergence, 632.8 nm wavelength. 

Line Generator 

Manufacturer:  Aerotech Inc. 

Part Number:   LG-1 

Description:   Cylindrical lens to produce line stripe. 

HeNe Laser Mirror 

Manufacturer:  Edmund Scientific 
101 East Glouchester Pike 
Barrington, NJ 08007-1380 
(609) 573-6250 

Part Number: 

Description: 

B31496 

First surface mirror, 47x51 mm. 

Timing Belt and Pulleys 

Manufacturer:  Winfred M. Berg, Inc. 
499 Ocean Avenue 
East Rockaway, NY 11518 
(516) 599-5010 

Part Numbers:  20TB-80, 20TP8-12, 20TP6-48 

Description:  Timing belt and pulleys, 1:4 ratio. 



Ill 

Stepper Motor and Driver 

Manufacturer: 

Part Number: 

Description: 

Oriental Motor USA, Corp. 
2701 Plaza Del Arno, Suite 702 
Torranee, CA 90503 
(213) 515-2264 

UMD 245-AA 

SUPER VEXTA UMD Step Motor/Driver Package. 

Controller Board 

Manufacturer:  Precision Micro Control Corp. 
3555 Aero Court 
San Diego, CA 92123 
(619) 565-1500 

Part Number: 

Description: 

DCX 

Eight-axis motion controller board. 

Stepper Motor Module 

Manufacturer:  Precision Micro Control Corp. 

Part Number:   DCX-MC150 

Description:   Plug-in module used for step motor. 

Proximity Switch 

Manufacturer:  efector, Inc. 
805 Springdale Drive, Whiteland Business Park 
Exton, PA 19341 
(800) 441-8246 

Part Number:   IF3002BPKG 

Description:   Solid state proximity switch. 



112 

Vision Hardware Specifications 

CCD Camera 

Manufacturer:  Panasonic Industrial Company 
One Panasonic Way 
Secaucus, NJ 07094 
(404) 368-0160 

Part Number: 

Description: 

WV-CD20 

510(H)x492(V) Element CCD Type; 6.6x8.8mm2 

scanning area equivalent to a 2/3" pick-up 
tube. 

Automatic Iris Lens 

Manufacturer:  Panasonic Industrial Company 

Part Number:  WV-LA16B 

Description:  Auto iris lens, 16mm focal length. 

Arithmetic Frame Grabber Board 

Manufacturer: 

Part Number: 

Description: 

Data Translation, Inc. 
100 Locke Drive 
Marlboro, MA 01752-1192 
(508) 481-3700 

DT2861 

512x512 frame-store memory buffers, 8 bit 
resolution. 

Auxiliary Frame Processor Board 

Manufacturer:  Data Translation, Inc. 

Part Number:   DT2858 

Description:   Provides features such as graphic overlays. 

Eight-Channel Video Multiplexer Board 

Manufacturer:  Data Translation, Inc. 

Part Number:   DT2859 

Description:   Permits eight video sources. 



113 

Computers, Robot, and Controller 

VC and SS computers 

Manufacturer:  Advanced Logic Research (ALR), Inc. 
9401 Jeronimo 
Irvine, CA 92718 
(412) 963-7459 

Part Number:   FlexCache 25386 computer 

Description:   IBM-type computer, 25 MHz, 1 MByte RAM. 

Robot and Robot Controller 

AdeptOne Robot 

Manufacturer:  Adept Technology, Inc. 
150 Rose Orchard Way 
San Jose, CA 95134 
(408) 432-0888 

Part Number:   AdeptOne Robot 

Description:   Four-axis SCARA configuration robot. 

Adept MC Controller 

Manufacturer:  Adept Technology, Inc. 

Part Number:  Adept MC Controller 

Description:  Motorola 68000 based workcell controller. 



114 

Appendix^ B 

Range Data Calibration 

Pinhole Camera Model 

Calibrating the RDS requires modeling the Panasonic 

camera with a pinhole camera model. The pinhole camera model 

geometry is shown in two dimensions in Figure B.l. This 

geometry is appropriate for either the top or side views of 

the camera, corresponding to the pixel distance in either the 

x,- or y^ directions, respectively. Modeling the camera con- 

sists of determining the focal length f, which is the dis- 

tance between the focal point FP and the image plane. The 

image plane is an array of 512 x 512 pixels with dimensions 

of 8.8 mm x 6.6 mm corresponding to a pixel width (in the x,- 

direction) of 0.15 mm and pixel height (in the y,- direction) 

of 0.12 mm. By comparing the acquired image with the object 

image dimensions, a value for the focal length is determined. 

According to the manufacturer specifications, the image 

plane is physically located 15.7 mm from the face of the lens 

mount as shown in Figure B.l. Since this distance is known, 

the distance D between the image plane and the object surface 

can be measured. The following geometry is used with experi- 

mental measurements to derive the focal length f for the 

camera. The distance D is composed of the range distance 

between FP and the object surface, and the focal length as 

D = f + r. (B.l) 

By similar triangles, 

p/f = 1/r. (B.2) 



115 

image of 
object 

object plane 

image plane 

CCD camera 
FP 

13.6 mm 

Figure B.l.  Pinhole Camera Model Geometry. 



116 

By substituting (B.l) in (B.2), an equation with one unknown, 

the focal length f, is 

p/f = l/(D-f) . (B.3) 

Rearranged, an equation for f is derived as 

f = p-D/(l+p). (B.4) 

By numerous experiments comparing the image pixel length with 

the object surface length at distances (D) near one meter, 

the focal length is estimated as 17.0 mm for the x,- direction 

and 16.75 mm for the y,. direction. 

RDS Geometry 

Figure B.2 shows the RDS geometry used for evaluating 

range data. Since triangulation requires two angles and a 

base length, the triangle corner points M and FP on the RDS 

platform are critical for accurate range data. Point M 

represents the point of reflection on the mirror, which is 

located with respect to the RDS platform as per the blueprint 

design tolerance of ±2 mil. Point FP represents the focal 

point of the camera as determined relative to the camera in 

the previous section. 

Point FP affects the values for d, a, and y, and is 

dependant on the camera position relative to the RDS plat- 

form. Though the camera position can be approximated, its 

precise position relative to the RDS platform cannot easily 

be measured. This is due to loose tolerances and a lack of 

specifications for the camera geometry. The angle of the 

camera relative to the platform, however, was designed and 

measured as 23.5 ± 0.1 degrees.   Therefore, the axial 



117 

focal point, FP 

CCD plane \ / 

I 

\ r rotational mirror 
laser v 

y       \ \ 

camera 
variability 

RDS platform 
camera 

camera depth mC\s~   incident laser light 

Figure B.2.     RDS geometry. 



118 

direction and centerline for the camera is known, but the 

focal point FP remains loosely approximated. Figure B.2 

shows a double-headed arrow to indicate the variability in 

the camera position relative to the platform. The angles for 

a and y, and the distance d are therefore dependent on the 

focal point position FP. 

Determining the Camera Position 

Stripes projected at a flat surface parallel to the RDS 

platform were observed with the vision system to determine 

the FP position analytically. Figure B.3 shows the configu- 

ration used for conducting this experimentation. The RDS 

platform was located a distance w from the flat surface, or 

wall, to approximate the one meter range of a presented 

collar. Stripes were projected on the wall with known geome- 

try and observed on the camera image plane by the vision 

system. 

The geometry for the stripes projected on the wall and 

the resulting stripe locations on the image plane were plot- 

ted in an AutoCAD drawing. Using the AutoCAD STRETCH com- 

mand, the image plane along with the lines of view were 

stretched along the camera depth axis until the focal point 

FP was 17.0 mm (f for x^ from the image plane. The position 

for point FP satisfying this criteria was used to determine 

a, Y, and d. The resulting values for these parameters as 

implemented in the triangulation software were 2.47 degrees, 

64.03 degrees, and 17.08 inches respectively. The error in 

these values is studied in the next section. 



119 

image 
plane 

STRETCH direction 

STRETCH window 

Figure B.3.  Configuration for laser striping on wall. 



120 

Range Data Uncertainty Analysis 

An uncertainty analysis, which is the process of system- 

atically quantifying error estimates, provides a tool for 

evaluating a measurement system such as the RDS. Each of the 

parameter values used for RDS triangulation includes a toler- 

ance which introduces an uncertainty error in the resulting 

range data measurement. Table IV gives each of the parame- 

ters used in triangulation and a conservative estimate for 

the error introduced by each parameter. For each parameter, 

the resulting RDS measurement error e,- is given by its xRDS, 

yRDS, and zRDS components. The error e? encompasses both an 

accuracy and precision error, as defined in Chapter IV. 

TABLE B-I 

THE PARAMETERS USED IN RDS TRIANGULATION AND 
THE CORRESPONDING MEASUREMENT ERRORS 

Parameter Error in 
Parameter 

Component Error of Measurement 

ey (mm) ey (mm) e, (mm) 

d ±1.0 mm 0.03 0.11 2.20 

a ±5 min. 0.02 0.03 1.22 

Y ±15 min. 0.13 0.40 7.95 

FL ±0.25 mm 0.21 0.69 0.43 

x, ±1 pixel 0.93 0.10 1.91 
• 

±1 pixel 0.00 0.77 0.00 



121 

The component errors for each of the parameters combine 

to increase the uncertainty of the RDS measurement. A real- 

istic estimate of the combined uncertainty, or propagation of 

error, for each of the RDS component measurements can be 

computed using the root-sum-sguares method (RSS) by 

e_N E«i (B.5) 
i-1 

The RSS component errors (e) for an RDS measurement are 0.96, 

1.12, and 8.57 mm for the xRDS, yRDS, and zRDS directions respec- 

tively. The measurement uncertainty in the zRDS direction is 

considerably higher than that for the other directions. This 

is due to the uncertainty in the camera angle y, which is the 

most critical parameter in the triangulation computation. 

The greater uncertainty in the depth direction gives a sense 

for the difficulty involved in achieving accurate range data. 

When compared with 2-D visual operations, 3-D operations in- 

volve more parameters and greater complexity, and thus, less 

measurement accuracy. 



122 

Appendix C 

System Calibration 

A conversion between RDS coordinates and robot coor- 

dinates is necessary for the collar model to be compared with 

its target destination in robot coordinates. The RDS must be 

calibrated with robot coordinates to provide this conversion. 

RDS calibration is accomplished by locating an intermediate 

frame with respect to RDS coordinates which is also defined 

in robot coordinates. Figure C.l shows the location of the 

intermediate frame, which is labeled EE_frame to designate a 

coordinate frame whose axes can be traced by the end-effector 

pointer. 

The EE_frame coordinate system is defined in robot 

coordinates by its origin and its axes (which are parallel to 

the robot coordinate frame) by the homogenous transformation 

RTEE as 

'1 0   0     -2.33 

Rrp         _ 
■LEE 

0 
0 

1   0   570.00 
0   1  214.00 

0 0   0          1 

(C.l) 

The position vector in this transformation is in millimeters. 

The EE_frame coordinate system is defined in RDS coordinates 

by calculating range data for points along the EE_frame xEE, 

yEE, and zEE axes as pointed to by the calibration pointer. 

The points along the axes must permit the laser stripe to 

intersect the calibration pointer tip, thus, points are 



123 

Figure C.l.  The intermediate frame EE_frame. 



124 

determined by first projecting the laser stripe and then jog- 

ging the robot along the selected EE_frame axis to meet the 

stripe. 

The EE_frame origin is determined with one point, and 

the EE_frame coordinate axes are defined as directions in the 

RDS coordinate system. An axis direction is determined by 

comparing the range data for points along the axis. For 

instance, the xRDS, yRDS, and zRDS components of the vector 

difference between two points on an EE_frame axis are normal- 

ized to give a unit vector in the direction of this axis with 

respect to RDS coordinates. Since this unit vector is an 

approximation involving RDS uncertainty, several points along 

an EE_frame axis are used to obtain unit vectors representing 

the axis direction. The resulting unit vector directions are 

averaged to yield a "best fit" which minimizes error in the 

axis direction. The EE_frame axis directions as determined 

in RDS coordinates compose the rotation matrix msRte  as 

RDSn 
KEE 

-0.9287  0.3096  0.2502 
0.0079  0.6301 -0.7787 

-0.3707 -0.7121 -0.5754 

(C.2) 

The determinant of matrix (C.2) is 0.9995. Since the deter- 

minant of a rotation matrix should be unity to satisfy the 

orthonormal condition, the directions of the individual 

EE frame axes are considered approximately orthonormal. 



125 

The transformation between the EE_frame and RDS coordinate 

systems is given by 

RDSrp 
■LEE 

-0.9287  0.3096 0.2502 -13.62 
0.0079  0.6301 -0.7787 -71.64 

-0.3707 -0.7121 -0.5754 1118.217 
0       0 0 1 

(C.3) 

By using (C.l) and (C.3), the following matrix algebra 

relates RDS coordinates to robot coordinates: 

EETRDS =   [RDSTEE]"\     and (C.4) 

Rip _    Rm Je    EErp 
"••RDS XEE ■LRDS* (C.5) 

This completes the derivation for the desired transformation 

RTRDS which relates range data to robot coordinates by using 

V  ss *T    * V VR     XRDS    VRDS* (C.6) 

Vector VR and VRDS are position vectors for a point with refer- 

ence to the robot and RDS coordinate frames, respectively. 



126 

Appendix D 

System Operation 

Three programs are executed simultaneously to control 

the AAW workstation through a collar turning and pressing 

cycle. The programs are named SS??.exe, VC??.exe, and 

RC??.v2 to correspond with the respective host controller. 

The wildcard symbol ?? is a two digit identification repre- 

senting a matched set of three programs, designed to be 

operated together by the respective controllers. Three sets 

of programs are available for system operation: SS38.exe, 

VC38.exe, and RC38.v2; SS40.exe, VC40.exe, and RC40.V2; and 

SS50.exe, VC50.exe, and RC50.V2. 

The 38-program set is a complete operational program in- 

volving operator prompts throughout the system procedure. 

The prompts are an aid in training an operator as well as a 

troubleshooting tool. The 40-program set is the complete 

operational program without prompts. The 50-program set is a 

reduced version of the 38-program set whose cycle operation 

includes through only the collar loading function. The 50- 

program set is given in Appendix E with accompanying header 

files. 

A sequence of steps follows for operating the system 

with the 50-program set.  Each of the other sets is executed 

similarly. 

1. Power up each of the PC controllers and the robot 
controller. Bring up the MSC\EXE subdirectories 
for each of the computers. 



127 

2. Execute the program AAWOFF.exe on the SS controller 
after the power to the peripherals has been switched 
on. This will initiate the I/O output signals. 
Push the green Program Start button on the robot 
controller to start the robot initialization, which 
takes approximately three minutes. Pressure to the 
robot must be 80 psi minimum. 

3. Load RC50.v2 into the robot controller buffer from 
the c: drive. Execute the initialization program 
AAW.exe on the SS controller. This is a routine to 
home the motors in the workstation. The robot speed 
can be set with the command SPEED 45 for brisk 
action. 

4. The system is now ready for operation. Enter the 
command EX RC50 in the robot computer, VC50 in the 
VC, and SS50 in the SS, and follow the prompts. 

5. A selection is available between manually and auto- 
matically loading the collar on the end-effector. 
Choose one or the other, and continue the program. 
The automatic selection will use the destacker de- 
vice for 'collar retrieval. Manual loading requires 
placing the unlined collar ply between the grippers 
with the fabric tensioned to prevent the ply from 
sagging and interfering with the bridge of the 
turning device. The collar should be centered side 
to side between the grippers, and the edge of the 
unlined ply should be 1/4" distant from the back 
edge of the gripper pads. Manual collar loading 
requires a person to load and an operator. 

6. Once the robot presents the collar to the pressing 
station, the operator is prompted for two threshold 
values, one for each the left and right collar point 
regions. Values of 180 and 160 have been determined 
experimentally to yield isolated stripes without 
excessive noise. 

7. The process continues until the collar is loaded on 
the vacuum surface. Another cycle is possible with 
the same commands: EX RC50, VC50, and SS50. 



128 

Appendix E 

Source Code Listing 

Vision Computer (VC) Source Code 

/* VC50.C */ 
/* AAW vision controller code */ 

#include <dos.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <strstuff.h> 
#include <vccom2.h> 
#include <vision.h> 
#include <moses.h> 
#include <kishore.h> 

ts_mainO 
{ 

struct char_pckt   ch_msg[NUMPCKTS]; 
struct packet msg[NUMPCKTS]; 
struct packet_data p_data[NUMPCKTS]; 
int numpckts, charpos; 
char type[6]; 
int nl, nr, ind, indl = 1, indr=1, flag; 
int ind171,ind173, ind175; 
int ind224, ind226, ind228; 
struct stripe line[8]; 
struct R_xyz colpointjeft, pxjeft, colpointjight, px_right; 
struct R_xyz delta, col_frame; 
int row, column, point_array[10], coeff_array[9], i; 
FILE *fpoint1, *fpoint2; 

xmitp_ss = fopenfxmitss.fir, "w+"); 
recvp_ss = fopenfrecvss.fil", "w+"); 
com_setup_vc(port_ss, BUFFSIZE, 

BAUD19200, EVENPAR, DATA8, STOP1, CTSREQD); 
msgptr = spawn ("Mssge_Handler_VC", 0x1200, mssge_handler_vc); 
signal_ssO; 
recv_ss(ch_msg); 

* * 

* START OF PLAN. * 
* * 

/* initialize vision software */ 

isJnitializeO; /* initialize vision software */ 
is~set_sync_source(EXT_SYNC); 
clearO; 
is_select_channel (1); 
select(O); 
is_set_foreground(200); 
is_display(1); 
ispassthruO; 



129 

/* open output files */ 

fpointl = fopen("vc50a.out", "w"); 
fpoint2 = fopen("vc50b.out", "w"); 
signal_ssO; /* vc 05 */ 
ilut( 20, 3); 
forfi=0; i<9; coeff_array[i++] = 1); 
sleep(3); 
is_select_channel (2); 
signal_ss(); /* vc 06 */ 
sleep (5); 
is_select_channel(1); 
reov_mssge_ss(type, pdata); 
numpckts = 0; 
charpos  = 0; 
numpckts = dis_int_data(&nl, p_data, &charpos, numpckts); 
numpckts = dis_int_data(&nr, p~data, &charpos, numpckts); 
is_freeze_frameO; 
is_select_output_f rame (4); 

/* acquire image of collar */ 
/A**************************/ 

is acquire) 4, 1); 
signal_ss(); /* vc 07 */ 

/* assign binary threshold values */ 

ilut( nl, 4); 
is select_ilut(4); 
ilut( nr, 5); 

/* compose RDS to Robot transformation */ 

ind = compose_TRDStoRO; 
if find = = 0) 
{ 

printf("Function compose_TRDStoRO has failed l\n"); 

} 
printffThe thresholds selected are: %d %d\n", nl, nr); 
signal_ss(); /* vc 10 */ 
is_select_output_f rame (1); 

/* acquire image of stripe 0 and filter */ 

is_acquire( 1,1); /* take picture with init lefthand stripe */ 
is convolve( 1,13, 3, 3, coeff_array, 1); 
isjlo_alu( 13, 3, 8, 0,16, 1); 

/* initiate linescan and edgefind bug for first stripe */ 

ind171 = define_stripe( &line[0], 1, T, 175, 171, fpointl); 
if(ind171 l= 0) 
{ 

printf ("Line 171 has problems!\n"); 

} 
signal_ss(); /* vc 20 */ 

/* signal for new mirror angle to give stripe 1 */ 

signal_ssO; /* vc 30 */ 
is_select_output_frame(2); 

/* acquire stripe 1 and image process */ 
/*«*•»«••**•«»•**«*«*•**«««»«***•******/ 
is_acquire( 2, 1); 



130 

is_convolve( 2, 13, 3, 3, coeff array, 1); 
is_do alu( 13, 3, 8, 0, 16, 2); 
ind173 = define_stripe( &line[1], 2, V, 160, 173, fpointl); 
if(ind173 != 0) 
{ 

printfCLine 173 has problems!\n"); 

} 
is_or(1,2, 3); 
is_frame_copy(3,1); 
is~select_output_f rame (3); 
signal ss"0; /* vc 30b */ 
signal"ssfj; /* vc 40 */ 

/* acquire stripe 2 and image process */ 
/***********•«****»•«******************/ 
is_acquire( 2,1); 
is_convolve( 2, 13, 3, 3, coeff_array, 1); 
is do_alu( 13, 3, 8, 0,16, 2);" 
ind175 = define_stripe( &line[2], 2, T, 145, 175, fpointl); 
if(ind175 != 0) 
{ 

printffLine 175 has problems!\n"); 

/* if stripes 0,1,2 were successfully image processed, */ 
/* then determine collar point location */ 

else if((ind171 == 0) && (ind173 == 0)) 

{ 
indl = collar_point( line[2], line[1], line[0], 

&colpoint left, &px left, fpointl); 
if (indl 1= 0) 

{ 
printffThe left collar_point routine failed!!"); 

} 
else 
{ 

printffThe Robot coords for the left collar point are:\n"); 
printf (" %8.3lf %8.3lf %8.3lf\n\n", 
colpoint_left.x, colpointjeft.y, colpointjeft.z); 

} 
} 
is_or(1, 2, 3); 
is_frame_copy(3,1); 
is_select_output_frame(3); 
signal_ssO; /* vc 40b */ 

/* display point location on video monitor */ 

if (indl = = 0) 

{ 
row    = (int) pxjeft.y + 5; 
column = (int) pxjeft.x; 
printffThe left collar point pixel values are: %d %d\n\n", 

row, column); 
is_set_graphic_position( row, column); 
point_array[ 0] = fmt) px_left.y; 
point_array[ 1] = column; 
is_draw_arc( 3, fint) pxjeft.y, (int) px_left.x, 360); 
is_frame_copy(3,1); 
is_select_output_frame(3); 

} 
is_select_ilut(5); 
signalssO; /* vc 50 */ 



131 

/* acquire stripe 3 and image process */ 

is_acquire( 2, 1); 
is_convolve( 2, 13, 3, 3, coeff array, 1); 
is_do_alu( 13, 3, 8, 0, 16, 2);~ 
ind224 = define_stripe( &line[3], 2, 'r\ 150, 224, fpointl); 
iffmd224 1=0) 
{ 

printffüne 224 has problems!\n"); 

} 
is_or(1,2,3); 
is_frame_copy(3,1); 
is_select_output_frame(3); 
signal_ssO; /* vc 50a */ 
signafssO; /* vc 60 */ 

/* acquire stripe 4 and image process */ 

is_acquire( 2, 1); 
is~convolve( 2,13, 3, 3, coeff_array, 1); 
is do_alu( 13, 3, 8, 0, 16, 2); ~ 
ind226 = define_stripe( &line[4], 2, 'r', 160, 226, fpointl); 
if(ind226 != 0) 
{ 

printffLine 226 has problems!\n"); 
} 
is_or(1,2, 3); 
is_frame_copy(3,1); 
is_select_output_f rame (3); 
signal_ssO;       ~ /* vc 60a */ 
signal_ss(); /* vc 70 */ 
/«A************************************/ 

/* acquire stripe 5 and image process */ 

is_acquire( 2, 1); 
is~convolve( 2, 13, 3, 3, coeff_array, 1); 
is_do_alu( 13, 3, 8, 0, 16, 2); 
ind228 = define_stripe( &iine[5], 2, "r\ 175, 228, fpointl); 

/* if stripes 3,4,5 were successfully image processed, */ 
/* then determine collar point location */ 

if(ind228 I- 0) 
{ 

printf ("Line 228 has problems!\n"); 

} 
else if ((ind224 = = 0) && (ind226 = = 0)) 
{ 

indr = collar_point( line[3], line[4], line[5], 
&colpoint_right, &px_right, fpointl); 

if (indr != 0) 
{ 

printffThe right collar_point routine failed!\n"); 

} 
else 
{ 

printffThe Robot coords for the right collar point are:\n"); 
printff %8.3lf %8.3lf %8.3lf\n\n-, 
colpoint_right.x, colpoint_right.y, colpoint right.z); 

} 
} 
is_or(1, 2, 3); 
is_frame_copy(3,1); 
is_select_output_frame(3); 
signal_ss();       ~ /* vc 70a */ 



I 
I 
I 
I 
1 
I 
1 
1 
I 
I 
I 
I 
1 
1 
I 
I 
1 
I 
I 

132 

/A************************************/ 

/* display point location on monitor */ 

if (indr = = 0) 
{ 

row    = fint) px_right.y + 5; 
column = (int) pxright.x; 
printffThe right collar point pixel values are: %d %d\n\n", 

row, column); 
is_set_graphic_position( row, column); 
is_draw_arc( 3, (int) px_right.y, (int) px right.x, 360); 
if (indl = = 0) 

{ 
is set graphic_position( (int) px_right.y, column); 
is_draw lines(3, 1, point_array); 

} 
} 
if ((indl = = 0) && (indr = = 0)) 

{ 
length = difference! colpoint_left.x, colpointjeft.y, colpointjeft.z, 

colpoint_right.x, colpoint_right.y, colpoint_right.r); 

/* determine collar_frame for collar position •*/ 
/*       and delta changes to x-y plane */ 

collar_frame( colpointjeft, colpoint_right, 
&delta, &col_frame, fpointl); 

printf("\nThe length between points is: %8.3lf", length); 
printf("\nThe delta changes are: x: %5.2lf y: %5.2lf theta: %5.2lf", 

delta.x, delta.y, delta.z); 
printf("\nThe collar frame has been located at: x: %5.2lf y: %5.2lf\n", 

col_frame.x, col_frame.y); 
fprintf(fpoint1,"\nThe length between points is: %8.3lf", length); 
fprintf(fpointl,"\nThe delta changes are:"); 
fprintf(fpointl ,"x: %5.2lf y: %5.2lf theta: %5.2lf", 

delta.x, delta.y, delta.z); 
fprintf (fpointl ,"\nThe collar frame has been located at:"); 
fprintf (fpointl ,"x: %5.2lf y: %5.2lf\n\n", col_frame.x, col frame.y); 

} 
else 

{ 
flag = 0; 
delta.x = delta.y = delta.z = col frame.x = col frame.y = 0.0; 

} 
savefile( 3); 
is_set_sync_source(INT_SYNC); 
is_add(3, 4, 5); 
is_select_output_f rame (5); 
savefiie( 5); 

/* send delta changes to System Supervisor */ 

numpckts = 0; 
charpos  = 0; 
numpckts = asm_double_data(delta.x, pdata, &charpos, numpckts, 1); 
xmit_mssge_ss(numpckts, "ROBOT", p_d*ata); 
numpckts - 0; 
charpos  = 0; 
numpckts = asm_double_data(delta.y, p_data,'&charpos, numpckts, 1); 
xmit_mssge_ss(numpckts, "ROBOT", p_data); 
numpckts = 0; 
charpos  = 0; 
numpckts = asm_double_data(delta.z, p_data, &charpos, numpckts, 1); 
xmit_mssge_ss(numpckts, "ROBOT", p_data); 
numpckts = 0; 



133 

I 
I 

charpos  = 0; 
numpckts = asm_double_data(col_frame.x, p_data, &charpos, numpckts, 1); 
xmit_mssge_ss(numpckts, "ROBOT", p_data); 
numpckts = 0; 
charpos  =0; 
numpckts = asm_double_data(col_frame.y, p_data, &charpos, numpckts, 1); 
xmit_mssge_ss(numpckts, "ROBOT", p_data); 
numpckts = 0; 
charpos  = 0; 
numpckts = asm_int_data(flag, pdata, &charpos, numpckts, 1); 
xmit_mssge_ss(numpckts, "ROBOT", p_data); 
is_set_syncJsource(EXT_SYNC); 
select(0); 
is_select_ilut(0); 
is_passthruO; 
signal_ssO; /* vc 80 */ 
fclose( fpointl); 
fclose( fpoint2); 
ciearO; 
is_passthruO; 

* * 

* END OF PLAN. * 
* • 

printf("\nProgram Completed!\n"); 
while (1) 

} 

/* IMAGEPRO.H */ 
/* 7 
/* a header file to perform computations   */ 
/* with stripes, create a collar model, */ 
/* and perform coordinate transformations */ 

/* V 
/* Spring 1991. David R. Cultice */ 

rixxxxx  ,„„..„„...„„.. .1 
#include <matstuff.h> 

/* define parameters for RDS and workspace transformations */ 
/********«*******#******************************************/ 
#deflne FOCALPTX       17.00    /* focal pt for x direction, ST016 */ 
#define FOCALPTY   .   16.75    /* focal pt for y direction */ 
#define DISTANCED      17.0788 /* distance from focal pt to mirror, STO05 */ 
#define GAMMANGLE      64.0273 /* gamma angle, STO04 */ 
#define LAMBDANGLE     2.4727   /* lambda angle, ST015 */ 
#define PI 3.14159265 
#define PEETORX -2.330      /* x comp. of pos. vec. for TEEtoR */ 
#define PEETORY        570.000 /* y comp. of pos. vec. for TEEtoR */ 
#define PEETORZ        214.000 /* z comp. of pos. vec. for TEEtoR */ 
#define GRIP_LEFT_X    160.712 
#define GR1PJ-EFTY    647.100 
#define GRIPJ-EFTZ    330.025 
#define GRIP_RIGHT_X -160.636 
#defme GRIP RIGHT_Y   647.100 
#define GRIP~RIGHT Z   330.025 
#define TARG~ET_X ~ -2.33 
#define TARGET_Y       689.202 
#define TARGET_THETA        0.1286 /* degrees */ 

int bugmove( int, int *, int *); 



134 

, int' ', int * , int [] ■ int []) 

int*, int*, int []. int []); 
inf* int *, int []. int []); 
int* int*, int []. int []); 
int* int*, int []. int []); 

void minmax( int, int, int *, int' 
int scan_right( int, int *, FILE *); 
int scanjeft( int, int *, FILE *); 
int bugO( int, int, int, int *, int *, 
int bugl (int, int, int, int *, int *, 
int bug2( int, int, int, int *, int *, int *, 
int bug3( int, int, int, int *, int 
void rds( double, double, double, double, double, double, FILE *); 
double difference! double, double, double, double, double, double); 
void triangulate(double, double, double, 

double *, double *, double *, FILE *); 
int compose_TRDStoRO; 
int rdstrans( double, double, double, double [], FILE *); 
double intersection! double, double, double, double); 
struct stripe curve_fit( double, double, double, double, double, double); 
void print_stripe( struct stripe); 
double sqr( double); - 
struct 

}; 

endpoint 
double 

{ 
x, y; 

struct 

}; 
struct 

}; 
double 

stripe         { 
struct endpoint endp1,endp2; 
double       slope, yjntercept; 
double       step_val; 

R_xyz 
double 

{ 
x, y, z; 

TRDStoR[ 
/I»*»»»«*********««««***********»*************»»**************/ 

/* function called by VC to search for stripe and endpoints */ 

int define_stripe( struct stripe *line, int f_no, int leftright, 
int yinit, int step, FÜ.E *fp) 

{ 
int ybug, xbug, xinit, i, ind; 
int xmaxsum, xminsum; 
int bugcase, n; 
int ymax = 0, ymin = 512, n1, n2, xmax[ 10], xmin[ 10]; 
double xminave, xmaxave; 

if (leftright = = V) 
xinit = scan_left( f_no, &yinit, fp); /* scans from right side */ 

else 
xinit = scan_right( f_no, &yinit, fp); 

printf ("\nThe bug hasbeen started at: %d ", xinit); 
if((0 < = xinit) && (xinit < 512)) 

{ 
ybug = yinit; 
xbug = xinit; 
if (leftright = = V) 

bugcase = bug3( f_no, ybug, xbug, &ymax, &ymin, &n1, &n2, xmax, xmin); 
else 

bugcase = bug1(f_no, ybug, xbug, &ymax, &ymin, &n1, &n2, xmax, xmin); 
ind = bugmove( bugcase, &ybug, &xbug); 
while((!((xbug==xinit) && (ybug == yinit))) && (ind == 0)) 

{ 
switch (bugcase) 

{ 
case 0: 

bugcase = bugO(f_no, ybug, xbug, &ymax, &ymin, &n1, &n2, xmax, xmin); 
ind - bugmove( bugcase, &ybug, &xbug); 
break; 

case 1: 
bugcase = bug1( f_no, ybug, xbug, &ymax, &ymin, &n1, &n2, xmax, xmin); 



135 

ind = bugmove( bugcase, &ybug, &xbug); 
break; 

case 2: 
bugcase = bug2(f no, ybug, xbug, &ymax, &ymin, &n1, &n2, xmax, xmin); 
ind = bugmove( bugcase, &ybug, &xbug); 
break; 

case 3: 
bugcase = bug3( f_no, ybug, xbug, &ymax, &ymin, &n1, &n2, xmax, xmin); 
ind = bugmove( bugcase, &ybug, &xbug); 
break; 

} 
} 
if (ind = = 0) 

{ 
xminsum = 0; 
xmaxsum = 0; 
for(i=0; i<n1; i++) 

xmaxsum + = xmax[ i]; 
xmaxave = (double) xmaxsum / (double) i; 
for(i=0; i<n2; i++) 

xminsum + = xmin[ i]; 
xminave = (double) xminsum / (double) i; 
fprintf( fp, "\nymax = %d, xmax = %6.2lf", ymax, xmaxave); 
fprintf (fp, "\nymin = %d, xmin = %6.2lf", ymin, xminave); 
(*line).endp1.x = xminave; 
(*line).endp1.y = (double) ymin; 
(*line).endp2.x = xmaxave; 
(*line).endp2.y = (double) ymax; 
if (xminave = = xmaxave) 

xmaxave += .1; 
(*line).slope = ((double) (ymin - ymax)) / (xminave - xmaxave); 
(*iine).y_intercept = (double) ymin - ((*line).slope * xminave); 
(*line).step_val = (double) step; 
return 0; 

} 
else 

{ 
fprintf( fp, "\nThe bug has traveled outside its limits"); 
return 1; 

} 
} 
else 

{ 
fprintf(fp, "\nThe line scan has failed: NO THRESHOLDED LINE FOUND\n"); 
return 1; 

} 
} 

/* linescan function to scan for stripe in right direction */ 
/«A***«»»«»******««»«******««*«**********«******«**********/ 

int scan_right( int f_no, int "vert, RLE *fp) 

{ 
int xbug, dest_array[1]; 

for( xbug=0; xbug < 140; xbug+ +) 
{ 

is get_pixel(f_no, *vert, xbug, 1, destarray); 
H(~dest_array[0] = = 255) 

{ 
printff\nlinescan 1"); 
printf("\nlinescan 1"); 
fprintf(fp, "\nThe line was found at: x = %d", xbug); 
fprintfj fp, "\nwith the first line scan"); 
printf("\nend linescan 1"); 
printf("\nend linescan 1"); 



136 

return (xbug-1); 
} 

} 
for(xbug=0; xbug<140; xbug++) 

{ • " 
is_get_pixel( f_no, (*vert+15), xbug, 1, dest_array); 
if (dest_array[Ö] = = 255) 
{ 

printf("\nlinescan 2"); 
printf("\nlinescan 2"); 
fprintf(fp, "\nThe line was found at: x = %d", xbug); 
fprintfj fp, "\nwith the second line scan"); 
*vert = *vert + 15; 
printff\nend linescan 2"); 
printf("\nend linescan 2"); 
return (xbug-1); 

} 
} 
for(xbug=0; xbug<140; xbug++) 
{ 

is get pixel (f_no, (*vert-15), xbug, 1, destarray); 
if ("des! array[Ö] = = 255) 
{ 

printf("\nlinescan 3"); 
printf("\nlinescan 3"); 
fprintf(fp, "\nThe line was found at: x = %d"., xbug); 
fprintf( fp, "\nwith the third line scan"); 
•vert = *vert -15; 
printf("\nend linescan 3"); 
printf("\nend linescan 3"); 
return (xbug-1); 

} 
} 
return 512; 

} 

/* linescan function to scan for stripe in left direction */ 
/............. ...... .. ... . . ../ 

int scan left( int f no, int *vert, RLE *fp) 
{ 

int xbug, dest_array[1]; 

for( xbug-511; xbug > 390; xbug-) 
{ 

is_get_pixel(f_no, "vert, xbug, 1, dest_array); 
H( dest array[0] = = 255) 

{ 
printf("\nlinescan 1"); 
printf("\nlinescan 1"); 
fprintf (fp, "\nThe line was found at: x = %d", xbug); 
fprintf(fp, "\nwith the first line scan"); 
printf("\nend linescan 1"); 
printf("\nend linescan 1"); 
return (xbug + 1); 

} 
} 
for( xbug=511; xbug > 390; xbug-) 
{ 
isget pixel(f_no, (*vert+15), xbug, 1, dest_array); 
if (dest_array[0] = = 255) 
{ 

printf("\nlinescan 2"); 
printf("\nlinescan 2"); 
fprintf( fp, "\nThe line was found at: x = %d", xbug); 
fprintf( fp, "\nwith the second line scan"); 



137 

*vert = "vert + 15; 
printf("\nend linescan 2"); 
printf("\nend linescan 2"); 
return (xbug + 1); 

} 
} 
for( xbug=511; xbug>390; xbug-) 
{ 

is_get_pixel( f_no, (*vert-15), xbug, 1, dest_array); 
if (dest_array[0] = = 255) 
{ 

printf("\nlinescan 3"); 
printf("\nlinescan 3"); 
fprintf( fp, "\nThe line was found at: x = %d", xbug); 
fprintf( fp, "\nwith the third line scan"); 
•vert = *vert -15; 
printf("\nend linescan 3"); 
printf("\nend linescan 3"); 
return (xbug + 1); 

} 
} 
return 512; 

} 
/A*************************************************/ 

/* four functions representing four directions       */ 
/* to search about a pixel for a clear path */ 
/««it***********************************************/ 

int bugO( int f_no, int vert, int horiz, int *ymaxp> jnt *yminp, int *Mp, 
int *n2p, int xrViaxf], int xmin[]) 

{ 
intdest_array[1]; 

is_get_pixel(f_no, vert+1, horiz, 1, dest_array); 
if (dest_array[0] = = 255) 

minmax( vert+1, horiz, ymaxp, yminp, nip, n2p, xmax, xmin); 
else 

return 3; 
is_get pixel(f no, vert, horiz+1,1, dest_array); 
if (dest_array[Ö] = = 255) 

minmax( vert, horiz+1, ymaxp, yminp, nip, n2p, xmax, xmin); 
else 

return 0; 
is_get_pixel( f_no, vert-1, horiz, 1, dest array); 
if (dest_array[0] = = 255) 

minmax( vert-1, horiz, ymaxp, yminp, nip, n2p, xmax, xmin); 
else 

return 1; 
is_get_pixel( f_no, vert, horiz-1, 1, dest_array); 
if( dest_array[0] = = 255) 

minmax( vert, horiz-1, ymaxp, yminp, nip, n2p, xmax, xmin); 
else 

return 2; 

} 

int bug1( int f_no, int vert, int horiz, int "ymaxp.int *yminp. int *n1p, 
int *n2p, int xmax[], int xmin[]) 

{ 
intdest_array[1]; 

is_get_pixel( fno, vert, horiz + 1, 1, dest_array); 
if (dest_array[5] = = 255) 

minmax( vert, horiz+1, ymaxp, yminp, nip, n2p, xmax, xmin); 
else 

return 0; 
is_get_pixel( f_no, vert-1, horiz, 1, dest_array); 



138 

if (dest_array[0] = = 255) 
minmax( vert-1, horiz, ymaxp, yminp, nip, n2p, xmax, xmin); 

else 
return 1; 

is get_pixel(.f_no, vert, horiz-1, 1-, dest array); 
if (~dest_array[0] = = 255) 

minmax( vert, horiz-1, ymaxp, yminp, nip, n2p, xmax, xmin); 
else 

return 2; 
is_get_pixel( fno, vert+1, horiz, 1, destarray); 
if (dest_array[0] = = 255) 

minmax( vert+1, horiz, ymaxp, yminp, nip, n2p, xmax, xmin); 
else 

return 3; 

} 

int bug2( int f_no, int vert, int horiz, int "ymaxp, int *yminp, int *n1p, 
int *n2p, int xmax[], int xmin[]) 

{ 
intdest_array[1]; 

is get pixel(f_no, vert-1, horiz, 1, dest_array); 
if(~dest_array[0] = = 255) 

minmax( vert-1, horiz, ymaxp, yminp, nip, n2p, xmax, xmin); 
else 

return 1; 
is_get_pixel( fno, vert, horiz-1,1, dest_array); 
if (dest_array[0] = = 255) 

minmax( vert, horiz-1, ymaxp, yminp, nip, n2p, xmax, xmin); 
else 

return 2; 
is get_pixel( f_no, vert+1, horiz, 1, dest_array); 
if fdest_array[0] = = 255) 

minmax( vert+1, horiz, ymaxp, yminp, nip, n2p, xmax, xmin); 
else. 

return 3; 
is_get_pixel( f_no, vert, horiz+1,1, dest_array); 
if (dest_array[0] = = 255) 

minmax( vert, horiz+1, ymaxp, yminp, nip, n2p, xmax, xmin); 
else 

return 0; 
} 

int bug3( int f_no, int vert, int horiz, int *ymaxp, int *yminp, int *n1p, 
int *n2p, int xmaxfj, int xmin[]) 

{ 
intdest_array[1]; 

is_get pixel(f_no, vert, horiz-1,1, dest array); 
if (dest_array[0] = = 255) 

minmax( vert, horiz-1, ymaxp, yminp, nip, n2p, xmax, xmin); 
else 

return 2; 
is get pixel(f_no, vert+1, horiz, 1, destarray); 
if fdest_array[0] = = 255) 

minmax( vert+1, horiz, ymaxp, yminp, nip, n2p, xmax, xmin); 
else 

return 3; 
is get_pixel(f_no, vert, horiz + 1, 1, dest_array); 
if fdest_array[0] = = 255) 

minmax( vert, horiz+1, ymaxp, yminp, nip, n2p, xmax, xmin); 
else 

return 0; 
is_get_pixel(f_no, vert-1, horiz, 1, dest_array); 
if ( dest_array[0] = = 255) 



139 

minmax( vert-1, horiz, ymaxp, yminp, nip, n2p, xmax, xmin); 
else 

return 1; 
} 

/* function to move bug one pixel in unblockedopen direction */ 

int bugmove( int bugcase, int *ybugp, int *xbugp) 

{ 
switch (bugcase) 

{ 
case 0: 

*xbugp +=1; 
break; 

case 1: 
*ybugp-= 1; 
break; 

case 2: 
*xbugp -= 1; 
break; 

case 3; 
•ybugp +=1; 
break; 

} 
if ((*xbugp < 0) 11 («xbugp > = 512)) 

return 1; 
if((*ybugp < 0) 11 (*ybugp >= 512)) 

return 1; 
return 0; 

}.„....««...„...«««...«..««.«.~ 
/* function holds the minimum and maximum */ 
/* position of the bug in the y direction */ 
/* to define the stripe enpoints */ 
/«A****************************************/ 

void minmax( int vert, int horiz, int »ymaxp, int *yminp, int *n1p, int *n2p, 
int xmax[], int xminfj) 

{ 
static int yprev, xprev; 

if ((vert l= yprev) 11 (horiz != xprev)) 

{ 
yprev = vert; 
xprev = horiz; 
if (vert > *ymaxp) 
{ 

•ymaxp = vert; 
*n1p = 0; 

} 
if (vert == *ymaxp) 

{ 
xmax[ *n1p] = horiz; 
*n1p +=1; 

} 
if (vert < *ymi"P) 
{ 

*yminp = vert; 
*n2p = 0; 

} 
if (vert = = *ym'nP) 

{ 
xmin[ *n2p] = horiz; 
*n2p +=1; 

} 
} 



140 

} 

void rds( double ypixeH, double xpixeM, double stepl, 
double ypixel2, double xpixel2, double step2, FILE *fpoint) 

{ 
double RDSxl, RDSyl, RDSzl, RDSx2, RDSy2, RDSz2; 
double VectorRI [4], VectorR2[4]; 
double xave, yave, zave, length; 
int indl, ind2; 

triangulate( ypixeM, xpixeM, stepl, &RDSx1, &RDSy1, &RDSz1, fpoint);    . 
indl = rdstrans( RDSxl, RDSyl, RDSzl, VectorRI, fpoint); 
triangulate( ypixel2, xpixel2, step2, &RDSx2, &RDSy2, &RDSz2, fpoint); 
ind2 = rdstrans( RDSx2, RDSy2, RDSz2, VectorR2, fpoint); 
xave = (VectorRI [0] + VectorR2[0])/2; 
yave = (VectorRI [1] + VectorR2[1])/2; 
zave = (VectorRI [2] + VectorR2[2])/2; 
length = difference( RDSxl, RDSyl, RDSzl, RDSx2, RDSy2, RDSz2); 
fprintf( fpoint, "\nThe 3-D coords for the stripe center are; \n"); 
fprintf( fpoint,"       x; %8.3lf y: %8.3lf z: %8.3lf\n", 

xave, yave, zave); 
fprintf(fpoint, The length is %8.3lf mm\n", length); 

} 

double difference! double RDSxl, double RDSyl, double RDSzl, 
double RDSx2, double RDSy2, double RDSz2) 

{ 
double diff, delx, dely, delz; 

delx = RDSxl - RDSx2; 
dely = RDSyl - RDSy2; 
delz = RDSzl • RDSz2; 
diff = sqrt(delx*delx + dely*dely + delz"delz); 
return diff; 

L........................................ 
/* triangulate for RDS coordinates: x.y.z. */ 
/............ ....... ...*...../ 
void triangulate( double ypixel, double xpixel, double step, 

double «RDSx, double *RDSy, double *RDSz, FILE «fpoint) 
{ 

double ST012, STO02, ST011, STO03, STO06; 
int ind; 

fprintf(fpoint, "\npixel set:       x:%10.3lf y:%10.3lf step:%10.3ir, 
xpixel, ypixel, step); 

ST012 = (255.0 - xpixel)*8.8/(510.0*FOCALPTX); 
ST002 = atan( ST012); 
ST011 = (245.0 - ypixel)*6.6/(492.0*FOCALPTY); 
STO03 = ((step * 0.45) + LAMBDANGLE) * PI/180.0; 
STO06 = STO02 + (GAMMANGLE * PI/180.0); 
•RDSz = cos(STO02) * tan(STO03) * DISTANCED * 25.4 

/   ((tan(STO06) + tan(STO03)) * cos(STO06)); 
•RDSx = -ST012 * «RDSz; 
•RDSy= -ST011 * *RDSz; 

fprintf(fpoint, "\nRDS coords:   x:%10.3lf y:%10.3lf z:%10.3lf", 
•RDSx, *RDSy, *RDSz); 

} 
/»**»*«»*****♦**«***«»******«*«*«»«****«*»*««*•««♦*/ 

/• transform rds coordinates to robot coordinates •/ 

int rdstrans( double RDSx, double RDSy, double RDSz, double VectorR[], 
FILE «fpoint) 



141 

{ 
double       VectorRDS[ 4]; 
int ind; 

/* compile Vectors */ 
VectorRDS[ 0] = RDSx; 
VectorRDS11] = RDSy; 
VectorRDS[ 2] = RDSz; 
VectorRDS[3] = 1.0; 

ind = mulmxvc( TRDStoR, 4, 4, VectorRDS, 4, VectorR); 
if (ind = = 0) 

{ 
printf ("\nThe mult of matrix and vector is not possible!!"); 
printf("\nSystem aborted!!"); 
return 0; 

} 
fprintt(fpoint, "\nrobot coords:     x:%10.3lf y:%10.3lf 2:%10.3lf\n", 

VectorR[0], VectorR[1], VectorR[2]); 
return 1; 

/* derive location for collar point in robot   */ 
/* coordinates with 3 stripe endpoint pairs    */ 
/* and 3 corresponding mirror angles */ 

int collar_point( struct stripe major, struct stripe middle, 
struct stripe minor, struct R_xyz "colpoint, 
struct R_xyz *px, FILE *fp) 

{ 
struct stripe temp, top, bottom; 
double    xjnt, yjnt, ratio 1, ratio2; 
double    xpoint, ypoint, distance; 
double     RDSx, RDSy, RDSz, VectorRf 4]; 
int ind; 

temp.slope = -1.0 / major.slope; 
temp.yjntercept « middle.endpl.y - (temp.slope * middle.endpLx); 
xjnt = intersection (temp.slope, temp.yjntercept, major.slope, 

major.yjntercept); 
yjnt = (temp.slope * xjnt) + temp.yjntercept; 
ratiol = difference( xjnt, yjnt, 0.0, middle.endpLx, 

middle.endpl.y, 0.0); 
ratiol = fabs{ major.stepval - middle.stepj/al) / ratiol; 
temp.slope = -1.0 / middle.slope; 
temp.yjntercept = minor.endpl.y - (temp.slope * minor.endp1.x); 
xjnt = intersection (temp.slope, temp.yjntercept, middle.slope, 

middle.yjntercept); 
y int = (temp.slope * xjnt) + temp.yjntercept; 
ratio2 = difference( xjnt, yjnt, 0.0, minor .endpLx, 

minor.endpl.y, 0.0); 
ratio2 « fabs( middle.step_val - minor.step_val) / ratio2; 
ratiol = (ratiol + ratio2) / 2.0; 
top = curveJit(major.endp1.x, major.endpl.y, middle.endpLx, 

middle.endpl.y, minor.endpLx, minor.endpl.y); 
bottom = curveJit( major.endp2.x, major.endp2.y, middle.endp2.x, 

middle.endp2.y, minor.endp2.x, minor.endp2.y); 
xpoint = intersection top.slope, top.yjntercept, bottom.slope, 

bottom.yjntercept); 
ypoint = (top.slope * x_point) + top.yjntercept; 
(*px).x = x_point; 
(*px).y = y_point; 
temp.slope - -1.0 / major.slope; 
temp.yjntercept = ypoint - (temp.slope * x_point); 
xjnt = intersection temp.slope, temp.yjntercept, major.slope, 



142 

major.yjntercept); 
y_int = (temp.slope * xjnt) + temp.yjntercept; 
distance = difference! xjnt, yjnt, 0.0, x_point, y_point, 0.0); 
if (major.endpLx > x_point) 

temp.step val = major.step_vaf - (distance *ratio1); 
else 

temp.step_val = major.step_val + (distance * ratiol); 
triangulate( y_point, x_point, temp.step_val, &RDSx, &RDSy, &RDSz, fp); 
ind = rdstrans( RDSx, RDSy, RDSz, VectorR, fp); 
if (ind = = 0) 
{ 

fprintf( fp, "\nrdstrans routine has not been carried out!!"); 
return 1; 

} 
else 
{ 

(*colpoint).x = VectorR[0]; 
(«colpointj.y = VectorR[1]; 
(*colpoint).z = VectorR[2]; 
return 0; 

} 
} /*************************************/ 
/* assign coordinate frame to collar */ 
/A************************************/ 

void collar_frame( struct R_xyz colpointjeft, struct R_xyz colpointjight, 
struct R_xyz *delta, struct R_xyz «coljrame, FILE *fp) 

{ 
double deltaxjeft, delta_x_right, delta_y_left, delta_y_right; 
double deltazleft, delta_z_right; 
double x_eff_left, x_effjight, y_eff_left, yeffright; 
double collar x, cofTar_y, collarjheta; 

delta_x_left = colpointjeft.x - GRIP_LEFT_X; 
delta yjeft = colpoint~left.y - GRIP~LEFT~Y; 
delta~zjeft = colpointjeft.z - GRIP~LEFT~Z; 
delta~x_right = colpoint_right.x - GRIP_RIGHT_X; 
delta_y_right = colpoint~right.y - GRIP_RIGHT_Y; 
delta_z_right = colpoint_right.z - GRIP_RIGHT_2; 

x_eff_left = GRIP_LEFT_X + delta xjeft; 
yeffjeft = GRIPJ-EFTY + sqrt(sqr( delta y left) + sqr( delta_z_left)); 
x_eff_right = GRIP_RIGHT_X + delta x_right; ~ 
y_eff_right = GRIP_RIGHT_Y + sqrt( sqr( delta_y_right) + 

sqr( delta_z_right)); 
collar_x = 0.5*( x_eff_left + x_eff_right); 
collary = 0.5*( y_eff_left + y_eff_right); 
collar_theta = atan2(( y_eff left - y eff_right), 

(x_eff_left - x_eff_right))* 180/PI; 
printff\nThe collarjrame attributes are: %672lf %6.2lf %6.2ir, 

collar_x, collar y, collarjheta); 
(•delta) x = TARGET X - collar_x; 
(*delta).y = TARGET~Y - collar_y; 
(*delta).z = TARGETJTHETA- collarjheta; 
(*colJrame)j( = collar_x; 
(*colJrame).y - collar y; 

} 

double sqr( double var) 
{ 

return var * var; 

/* function to determine intersection of two lines */ 



143 

double intersection) double slope 1, double y intl, double slope2, 
double y_int2) 

{ 
double x int; 

x_int = (y_int1 - y_int2) / (slope2 - slopel); 
return x_int; 

} /.....«.«„«...„„...„.«.„..„„„.„ 
/* fit least squares regression to endpoints */ 
********************************************* 7 

struct stripe curve_fit( double x1, double y1, double x2, double y2, 
double x3, double y3 ) 

{ 
struct stripe line; 
double sigx, sigy, sigxy, sigxsigy, sig_x2, sigx_2; 

sigx = (x1 + x2 + x3); 
sigy = (y1 + y2 + y3); 
sigxy = x1 * y1 + x2 * y2 + x3 * y3; 
sigxsigy = sigx * sigy; 
sig_x2 = x1 * x1 + x2 * x2 + x3 * x3; 
sigx_2 = sigx * sigx; 

line.slope = (sigxy - sigxsigy / 3.0) / (sig_x2 - sigx_2 / 3.0); 
line.yjntercept = sigy / 3.0 - line.slope * sigx / 3.0; ~ 

return line; 
} 

%d", 

void print_stripe( struct stripe line) 
{ 

printf("\nThe pixel coords for the top endpoint; x = %d y 
(int) line.endpl.x, (int) line.endpl.y); 

printf("\nThe pixel coords for the bottom endpoint; x = %d y = 
(int) Iine.endp2.x, (int) Iine.endp2.y); 

printf ("\nThe slope is %8.5lf", line.slope); 
printf ("\nThe yintercept is %8.5lf", line.yjntercept); 
printf("\nThe step value for this stripe is %d", Ont) line.step_val); 

}.«.....«« . 
/* assemble RDS to Robot coordinate transformation */ 

int compose TRDStoRO 
{ 

double      TEEtoRf 16], TEEtoRDSf 16], TRDStoEE[ 16]; 
int i, ind, crow, ccol; 

%d" 

/* create transformation matrices */ 
for( i « 0; i < 16 TEEtoR[i++] 
TEEtoR[ 0] = 1.0; 
TEEtoR[ 3] = PEETORX; 
TEEtoR[ 5] = 1.0; 
TEEtoR[ 7] = PEETORY; 
TEEtoR[10] = 1.0; 
TEEtoR[11] = PEETORZ; 
TEBoR[15] = 1-0; 

TEEtoRDS[ 0] = -.9287; 
TEEtoRDS[ 1] = .3096 
TEEtoRDS[ 2] = .2502 
TEEtoRDS[ 3] = -13.62 
TEEtoRDS[ 4] = .0079 
TEEtoRDS[ 5] = .6301 
TEEtoRDS[ 6] = -.7787 

0.0); 



144 

TEEtoRDS[7] = -71.64 ; 
TEEtoRDS[ 8] =    -.3707; 
TEEtoRDS[9] =    -.7121; 
TEEtoRDS[10] =    -.5754; 
TEEtoRDS[11] =1118.217; 
TEEtoRDS[12] =    0.0 
TEEtoRDS[13] =   0.0 
TEEtoRDS[14] =    0.0 
TEEtoRDS[15] =•   1.0 

/* invert TEEtoRDS to TRDStoEE Transformation matrix */ 
inverse( TEEtoRDS, TRDStoEE); 
ind = mulmx( TEEtoR, 4, 4, TRDStoEE, 4, 4, TRDStoR, &crow, &ccol); 
rf (ind = = 0) 

{ 
printf("\nThe mult of the two matrices was not possible!!"); 
printf("\nSystem aborted!!"); 
return 0; 

} 
return 1; 

} 

/* VISION.H */ 
/* 7 
/* header file for vision functions */ 
/it*************************************/ 

#include <isdefs.h> 
#include <iserrs.h> 

#define EXT SYNC 1 
#define INT_SYNC 0 
#define MAX_STR 80 
#define GREY_SCALE 256 

void pauseO; 
void sleep 0; 
void savefileO; 
void select 0; 
void clear( void); 
void ilut( int, int); 

/* wait for enter key */ 
void pause 0 
{ 

while(keyinO != ENTRKEY) 
t 

»»»uiuuuium  

/* no operation for n seconds */ 

void sleep (n) 
int n; 

{ 
long timeval, timeO; 

timeval = time(0L); 
while(time(0L) < timeval + n); 

> 

/* save image file to operator selected filename */ 

void savefile(frame_no) 
int frame no; 



145 

{ 
charfile1[MAX_STR]; 
int spac_res_factor, ch; 
printf("\nDo you wish to save this, frame to a file? (y or n):"); 
ch = getcheÖ; 
if{(ch==y) || (ch--Y)) 

{ 
printf ("\nEnter the path and filename.ext to store frame:"); 
scanf ("%s\file1); 
printfptou entered %s.", fuel); 
printf("\nEnter the spacial resolution factor (1 [full] - 8 incl.):"); 
scanf ("%d", &spac_res_factor); 
is_save( framejio, T, spac_res_factor, 0, filel); /*run-length encoded*/ 
is restore(frame_no, 0, 0, filel); 

}   " 
} 

void select( frame_no) 
int frameno; 
{ 

is_select_input_frame( frame_no); 
is select_output frame( frame no); 

}   " 

/A*******************************************/ 

/•assign binary threshold value for LÜT    */ 

void ilut( int threshold, int ilut number) 
{ 

int i, ilut_array[ GREY_SCALE]; 

for( i=0; i<threshold; i++) 
ilut_array[i] = 0; 

for( i=threshold; i<256; i+ +) 
ilut_array[i] = 255; 

is_load_ilut( ilutnumber, ilut_array); 

} 

void clear( void) 
{ 

int n; 

for(n=0; n<16; n++) 
is_frame_clear(n); 

} 

/» MATRIX.H V 
/* matrix functions */ 
/A********************/ 

#define NDETSQR 36 

int mulmx(a, arow, acol, b, brow, bcol, c, crowp, ccolp) 
int    arow, acol, brow, bcol, *crowp, *ccolp; 
double a[], b[], cfj; 
{ 

int    i, j, k, ia, ib, ic; 
if (acol != brow) 

return 0; 
for(i = 1; i <= arow; i++) 

forfl = 1; j <= bcol; j++) 

{ 
mxvc(&k, i, j, bcol); 
c[k] = 0.0; 



146 

} 
for(i = 1; i <= arow; i++) 

forö = 1; j < = bcol; j++) 
for(k = 1; k < = acol; k++) 

{ 
mxvc(&ic, i, j, bcol); 
mxvc(&ia, i, k, acol); 
mxvc(&ib, k, j, bcol); 
c[ic] + = a[ia]*b[ib]; 

} 
*crowp = arow; 
•ccolp = bcol; 
return 1; 

} 

int inverse(a, ai, n) 
double a[], ai[]; 
int    n; 

{ 
double b[NDETSQR], detm; 
int    nm, i, j, k, I, row, col, m, last, itrans; 
detm = det(a, n); 
if (detm = = 0.0) 

return 0; 
nm = n-1; 
last = n*n; 
for(i = 0; i < last; i++) 
{ 

vcmx(i, &row, &col, n); 
m = 0; 
for(j = 1; j <= n; j++) 

for(k = 1; k <= n; k++) 
{ 

if((j != row) && (k != col)) 

{ 
mxvc(&l, j, k, n); 
b[m] = a[l]; 
m++; 

} 
} 

mxvc(&itrans, col, row, n); 
if ((row + col) % 2) 

ai[itrans] = -det(b, nm)/detm; 
else 

aifjtrans] =  det(b, nm)/detm; 
} 
return 1; 

} 

int mulmxvcfa, arow, acol, b, brow, c) 
double a[], b[], c[]; 
int    arow, acol, brow; 

{ 
int i, j, k; 
if (acol != brow) 

return 0; 
for(i = 0; i < arow; i++) 

c[i] = 0.0; 
for(i = 0; i < arow; i++) 

for(j = 0; j < brow; j++) 
{ 

mxvc(&k, i+1, j +1, acol); 
c[i]+=a[k]*b[j]; 

} 
return 1; 



147 

System Supervisor (SS) Source Code 

/A*************************************/ 

/* SS50.C 7 
/* 7 
/* System Supervisor AAW Control Code */ 

r^t t mmt       v 

#include <dos.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <strstuff.h> 
#inolude <handetc2.h> 
#include <sscom2.h> 

ts_mainO 
{ 

char resp[80], type[6]; 
struct char_pckt   ch_msg[NUMPCKTS]; 
struct packet      msg[NUMPCKTS]; 
struct packet_data p_data[NUMPCrCTS]; 
int numpckts, charpos; 
int nl, nr, flag, dflag; 
double fing_dist[3]; 
struct R xyz 
{ 

double x, y, z; 
} delta, col_frame; 
systemfcls"); 
xmitp_vc = fopenfxmitvc.fir, "w+"); 
recvp_vc = fopenfrecwafil", "w+"); 
xmitprc = fopenCxmitrcfil", "w+"); 
recvpjrc « fopenfrecvrcfil", "w+"); 
com_setup ss(port_vc, BUFFSIZE, 

BAUD19200, EVENPAR, DATA8, STOP1, CTSREQD); 
com setup_ss(port re, BUFFSIZE, 

BAÜD19200, EVENPAR, DATA8, STOP1, NOCTS); 
aljnitializeO; 
al_select_board(1); 
al_resetO; 
al_enable_for_output(0); 
al_enable_for_input(1); 
aloutput digital value(0, 0x01, 0x00); /* setting for RS-232 */ 
kbdint = 7ntatt(0x9, 0x100, kbdisr, REPLACE, kbdptr); 
kbdptr = spawn("Kbd_Tsk", 0x400, kbdjsk); 
msgptr = spawn("Mssge_Handler_SS", 0x1500, mssge_handler_ss); 
signal_vcO; 
signal_rcO; 
printf("\nPress <ENTER> to begin!"); 
fget_sline(stdin, resp); 

* * 

* START OF PLAN. * 

/* initialize system */ 

init aawQ; 



148 

slideway(O); 
9"P(0); 
pickers(O); 
destack(1); 
clamps(O); 
blades(O); 
vacuum_table_elevation (0); 
trans_grippers_abs(0.0); 
pitcheef astabs (0.0); 
pivot_abs(24.17); 
rotate_mirror_abs(100L); 

/* code to interact with operator */ 

signal_rcO; /* re 001 */ 
printff Load from destacker? (y/n)\n-); 
fget_sline(stdin, resp); 
systemfcls"); 

if(resp[0]==V) 
dflag = 1; 

else 
dflag = 0; 

numpekts = 0; 
charpos  =0; ' 
numpekts = asm_int_data(dflag, p_data, &charpos, numpekts, 1); 
xmit mssge_rc(numpckts, "DELTA", p_data); 
if(dflig) 
{ 

destack(O); 
signal_vc(); /* vc 05 */ 
pickers (1); 
destack(1); 
signal_rcO; /* re 001a */ 
signal_rcO;        /* re 001b*/ 
grip(1); 
pickers(O); 
signal_rcO;        /* re 001c */ 

} 
else 
{ 

printffLoad collar and press ENTER when done."); 
fget_sline(stdin, resp); 
systemfcls"); 
grip(1); 
printff Press ENTER when operator is out of robot workspace."); 
fget_sline(stdin, resp); 
systemfcls"); 
signal_vcO; /* vc 05 */ 
signal_rcO; /* re 002 */ 

} «««.« .   «,. «..« .««««.««...... 
/* session to turn collar with turning device */ 
/ft*********************************************/ 
signal_rc(); /* re 003 */ 
pivot_abs(0.0); 
airjets(1); 
trap(1); 
airjets(0); 
grip(0); 
signal_rcO; /* re 004 */ 
signal_rcO; /* re 005 */ 
pivot_abs(85.0); 
pitch_ee_fastabs(-12.8); 
signalrcO; /* re 006 */ 
signal_rcQ; /* re 007 */ 



149 

trans_grippers(0.5); 
prinfffPress ENTER to close grippers."); 
fget_sline(stdin, resp); 
systemfcls"); 
grip(1); 
trap(0); 
signal_rcO; /* re 008 */ 
signal_vcO; /* vc 06 */ 
pitch_ee_fastabs (-50.0); 
trans_grippers (0.9375); 
signal_rc(); /* re 009 */ 
/«A*************************************/ 

/* beginning of laser striping session */ 
/A**************************************/ 

system ("els"); 
printffType in left and right binary threshold values to be used"); 
printf("\nfor the ILUTs (choose between 170 and 255):   "); 
scanf("%d %d", &nl, &nr); 
systemfcls"); 
printffYouVe selected values of: %d %d\n", nl, nr); 
fget_sline(stdin, resp); 

/* send chosen threshold values to VC */ 

numpekts = asm_int_data(nl, pdata, &charpos, numpekts, 0); 
numpekts = asm_int_data(nr, pdata, &charpos, numpekts, 1); 
xmit_mssge_vc(numpckts, "RDSSV", p_data); 
signal_vcO; /* vc 07 */ 
/* turn laser on */ 
laserfl); 

/* rotate mirror to stripe position 0 */ 

rotate_mirror_abs(171L); /* left-most laser line */ 
signal_vcO; /* vc 10 */ 
/* wait for VC to image process the stripe */ 
signal_vcfj; /* vc 20 */ 

/* rotate mirror to stripe position 1 */ 

rotate_mirror(2L); 
signal_vcO; /* vc 30 */ 
signal_vcO; /* vc 30b */ 

/* rotate mirror to stripe position 2 */ 

rotate_mirror(2L); 
signal_vcO; /* vc 40 */ 
signal_ycO; /* vc 40b */ 

/* rotate mirror to stripe position 3 */ 

rotate_mirror_abs(224L); /* direct laser line to right collar half */ 
signalvcO; /* vc 50 */ 
signal_vcO; /* vc 50a */ 
rotate_mirror(2L); 
signal_ycO; /* vc 60 */ 
signal_vcO; /* vc 60a */ 
ssleepO; 
rotate_mirror(2L); 
swakeO; 
signal_vcO; /* vc 70 */ 
signal_vc(); /* vc 70a */ 
/* turn off laser */ 
laser(0); 



150 

rotate_mirror_abs(100L); 
vacuum_table_elevation (1); 
while (!is_vacuum_table_up 0) 

printf ("Waiting for vacuum table to go up.\n"); 

/* receive delta error vector */ 
/* from VC and relay it to RC */ 

recv_mssge_vc(type, p_data); 
numpckts = 0; 
charpos = 0; 
numpckts = dis double_data(&delta.x, p_data, &charpos, numpckts); 
recv_mssge_vc(type, pdata); 
numpckts = 0; 
charpos  = 0; 
numpckts = dis_double_data(&delta.y, p_data, &charpos, numpckts); 
recv_mssge_vc(type, p_data); 
numpckts = 0; 
charpos = 0; 
numpckts = dis_double_data(&delta.z, p_data, Ächarpos, numpckts); 
recv_mssge_vc(type, pdata); 
numpckts = 0; 
charpos  = 0; 
numpckts = dis_double_data(&col_frame.x, p_data, &charpos, numpckts); 
recv_mssge_vc(type, p_data); 
numpckts = 0; 
charpos  = 0; 
numpckts = dis_double_data(&coI_frame.y, p_data, &charpos, numpckts); 
recv_mssge_vc(type, p_data); 
numpckts = 0; 
charpos  = 0; 
numpckts = dis_int_data(&flag, p_data, &charpos, numpckts); 
numpckts = 0; 
charpos  = 0; 
numpckts = asm_double_data(delta.x, p_data, &charpos, numpckts, 1); 
xmit_mssge_rc(numpckts, "DELTA", p_data); 
numpckts = 0; 
charpos = 0; 
numpckts = asm_double_data(delta.y, p_data, &charpos, numpckts, 1); 
xmitjmssge_rc(numpckts, "DELTA", p_data); 
numpckts = 0; 
charpos = 0; 
numpckts = asm_double_data(delta.z, pdata, &charpos, numpckts, 1); 
xmit_mssge_rc(numpckts, "DELTA", p_data); 
numpckts - 0; 
charpos = 0; 
numpckts = asm_double_data(col_frame.x, p_data, &charpos, numpckts, 1); 
xmit_mssge_rc(numpckts, "DELTA", p_data); 
numpckts = 0; 
charpos = 0; 
numpckts = asm_double_data(col_frame.y, p_data, &charpos, numpckts, 1); 
xmit_mssge_rc(numpckts, "DELTA", pdata); 
numpckts = 0; 
charpos  = 0; 
numpckts = asm_int_data(flag, p_data, &charpos, numpckts, 1); 
xmit_mssge_rc(numpckts, "DELTA", p_data); 

/* synchronize end-effector and vacuum with robot loading */ 

pitch_ee_fastabs (-90.0); 
signaTjcO; /* re 010 */ 
signal_rcO; /*rc0ll*/ 
vacuum (1); 
signal_rcO; /* re 012 */ 
signal_rcO; /* re 013 */ 



151 

signal_rcO; /* re 014 */ 
signal_rcO; /* re 015 */ 
signal_vcO; /* vc 80 */ 
/****************/ 
/* reset system */ 
/****************/ 
vacuum (0); 
trans_grippers_abs(0.0); 
pitch_ee_f astabs (0.0); 
pivot_abs(24.17); 

* * 

* END OF PLAN. * 
* * 

printf("\nProgram Completed!\n"); 
while (1) 

} 

/* HANDETC.H */ 

/* V 
/* utility file with DCX control commands */ /«......»..«.«.«.«„...«. ./ 
#include <dcxcifc.h> 
#include <atldefs.h> 
#include <atlerrs.h> 

void    init_rdsO; 
void    laserO; 
void    rotate_mirrorO; 
void    rotate_mirror_absO; 
/A*******»*************/ 

/* RDS initialization */ 
/**********************/ 

void init_rdsO 
{ 

int r; 
struct rpyfmt32 ch8, ch12; 

dcxcmd(0, 1, AXIS2 + AB, OL); 
dcxcmd(0, 2, AXIS2 + SI, 1L, AXIS2 + SV, 2L); 
dcxcmd(0, 1, AXIS2 + SA 3L); 
dcxcmd(0, 1, AXIS2 + MN, OL); 
/* this initialized channels output, 

set output low: turned laser off   */ 
dcxcmd(0, 1, TC, 12L); /* This will verify that the flag is off sensor*/ 
dcxrpy(0, sizeof(ch12), (int far *) &ch12); 
r = ch12.val; 
if(r) 

{ 
doxcmd(0, 2, AXIS2 + MR, -100L, AXIS2 + WS, 100L); 
dcxcmd(0,1, NO); 

} 
r = 0; 
dcxcmd(0, 3, AXIS2 + Dl, OL, AXIS2 + VM, OL, AXIS2 + GO, OL); 
while (!r) 
{ 

dcxcmd(0, 1, TC, 12L); 
dcxrpy(0, sizeof(ch12), (int far *) &ch12); 
r - ch12.val; /*flag rotates until it trips sensor (eh 12) */ 
if(r) 

dcxcmd(0, 1, AXIS2 + ST, OL); 



152 

} 
wait_1s(); 
dcxcmd(0, 1, AXIS2 + MN, OL); 
while (1)   /* access step 0 output for motor 2: ch8*/ 

{ 
dcxcmd(0, 1.TC, 8L); 
dcxrpy(0, sizeof(ch8), (int far *) &ch8); 
r = ch8.val; 
if(r) 

dcxcmd(0, 2, AXIS2 + MR, -1L, AXIS2 + WS, 100L); 
else      /* motor 2 is at step 0 */ 

break; 

} 
dcxcmd(0, 3, AXIS2 + SI, 2L, AXIS2 + SV, 10L, AXIS2 + SA, 6L); 
rotate_mirror(-186L); 
wait_100ms(); 
dcxcmd(0, 2, AXIS2 + DH, OL, AXIS2 + WS, 100L); 
rotate_mirror abs(100L); 

} 

I* laser on/off */ 

void laser(state) 
int state; 
{ 

if(state) 
dcxcmd(0, 1, CN, 7L); 

else 
dcxcmd(0, 1, CF, 7L); 

/* rotate mirror by 'step' relative steps */ 

void rotate_mirror(step) 
long step; 
{ 

dcxcmd(0, 2, AXIS2 + MR, step, AXIS2 + WS, 255L); 
wait lOOmsfj; 
dcxcmd(0,1, NO); 

} /...... .. ....... .........../ 
/* rotate mirror by 'step' absolute steps */ 

void rotate_mirror_abs(step) 
long step; 
{ 

dcxcmd(0, 2, AXIS2 + MA, step, AXIS2 + WS, 255L); 
waitjIOOmsO; 
dcxcmd(0,1, NO); 

} 

Robot Controller (RC) Source Code 

.PROGRAM rc5O0 
; for Adept MC1 Controller 

AUTO $mssge 
AUTO REAL deltax, deltay, theta, coljramex, coljramey 
AUTO REAL dflag, flag 

ATTACH (5) 
SPEED 50 ALWAYS 



153 

ACCEL 120, 20 
signal_state = 0 
CALL signal ssO 
SIGNAL -2001 
PCEXECUTE pc 0, 0, 0 " 
WAIT SIG(2001) 
SIGNAL -2010 
CALL recv($mssge) 
REACT 1001, shutdown, 10 

******************** 
* * 

* START OF PUN.  * 

TYPE "The program is running.." 
LEFTY 
SPEED 100 
MOVE loc[0] 
BREAK 
CALL signal_ssO ; re 001 
CALL recv_mssge_ss($pckt.type, $pckt.data[]) 
charpos = 1 
numpckts = 0 
CALL disassemb int(dflag, $pckt.data[], charpos, numpckts) 
IF dflag THEN 

SPEED 150 
MOVE destackl 
BREAK 
CALL signal ssO ; re 001a 
SPEED 6 
MOVES destack2 
BREAK 
CALL signal_ssO ; re 001b 

,  CALL signafssO; re 001c 
SPEED 25 
MOVE destack3 
BREAK 
SPEED 50 
MOVES destackl 
SPEED 120 
MOVES loc[2] 
BREAK 

ELSE 
CALL signal_ss(); re 002 
SPEED 150 
MOVES loc[1] 
SPEED 100 
MOVE loc[2] 
BREAK 

END 
MOVE loc[3] 
BREAK 
MOVE loc[4] 
BREAK 
CALL signalssO ; re 003 
CALL signal_ssO ; re 004 
MOVE loc[5] 
BREAK 
MOVE loc[6] 
BREAK 
CALL signal ssO ; re 005 
MOVE loc[7j 
BREAK 
CALL signal_ssO ; re 006 
MOVE loc[8] 



154 

BREAK 
SPEED 5 
MOVES loc[9] 
BREAK 
SPEED 10 
MOVES loc[10] 
BREAK 
CALL signal_ssO ; re 007 
CALL signal_ssO ; re 008 
SPEED 100 
MOVEIoc[11] 
SPEED 240 
MOVEIocm 
SPEED 200 
MOVE loc[12] 
BREAK 
CALL signal_ssO ; re 009 

receive 'delta' error vector from SS 

CALL recv_mssge_ss($pckt.type, $pckt.data[]) 
charpos = 1 
numpekts = 0 
CALL disassemb_real(deltax, $pckt.data[], charpos, numpekts) 
CALL recv_mssge_ss($pckt.type, $pckt.data[]) 
charpos = 1 
numpekts = 0 
CALL disassemb_real(deltay, $pckt.data[], charpos, numpekts) 
CALL recv_mssge_ss($pckt.type, $pckt.data[]) 
charpos = 1 
numpekts = 0 
CALL disassemb_real(theta, $pckt.data[], charpos, numpekts) 
TYPE 
TYPE "x= ", deltax," y= ", deltay," theta= ", theta 
CALL recv_mssge_ss($pckt.type, $pckt.data[]) 
charpos = 1 
numpekts = 0 
CALL disassemb_real(col_framex, $pckt.data[], charpos, numpekts) 
CALL recv_mssge_ss($pckt.type, $pckt.data[]) 
charpos = 1 
numpekts = 0 
CALL disassemb_real(col_framey, $pokt.data[], charpos, numpekts) 
TYPE 
TYPE "col frame.x = ", coljramex," coljrame.y = ", coljramey 
TYPE 
CALL recv_mssge_ss($pckt.type, $pckt.data[]) 
charpos = 1 
numpekts = 0 
CALL disassemb_int(flag, $pckt.data[], charpos, numpekts) 
IF flag THEN 

assemble robot trajectory from error vector 

BREAK 
SETalt14[1] = TRANS(col_framex+6,col_framey-763.304) 
SET alt14[2] = TRANS( -theta) 
SETalt14[3] = TRANS(-(col framex+6),763.304-col_framey) 
SET alt14[4] = TRANS(,„„theta) 
SET rotate14 = alt13:alt14[1]:alt14[2]:alt14[3] 
SETalt15 = TRANS(deltax,-(deltay+55),111.265); 
SET cart15 = rotate14:alt14[4]:alt15:alt14[2] 
SET alt16 = TRANS(,25,56); 
SET cart16 = cart15:alt16 
SET alt17 = TRANS(,10,-9) 
SET cart17 = cart16:alt17 



155 

DECOMPOSE decomp17[] = cart17 
TYPE "cart17: x= ", decomp17[0] 
TYPE" y= ", decomp17[1] 
TYPE "     theta= ", decomp17[5] 

TYPE "Elected modified locations" 

synchronize robot movements with SS system commands 

CALL signal ssO ; re 010 
SPEED 50 ALWAYS 
MOVE alt13 
BREAK 
SPEED 5 
MOVE rotate 14 
BREAK 
SPEED 10 
MOVE cart15 
BREAK 
CALL signal_ss(); re 011 

turn on vacuum 
CALL signal ssO ; re 012 
SPEED 15 " 
MOVE cart16 
BREAK 
MOVE cart17 
BREAK 
CALL signal ssO ; re 013 

ELSE 
TYPE "Elected preprogrammed locations" 
CALL signal ssO ; re 010 
SPEED 50 ALWAYS 
MOVE loc[13] 
BREAK 
MOVE loc[14] 
BREAK 
MOVE loc[15] 
BREAK 
CALL signalssO ; re 011 
CALL signal_ssO ; re 012 
SPEED 15 
MOVE loc[16] 
BREAK 
MOVE loc[17] 
BREAK 
CALL signal_ssO ; re 013 

END 
CALL signal ssfj ; re 014 
MOVE loc[18] 
BREAK 
MOVE loc[19] 
BREAK 
CALL signal_ssO ; re 015 
CALL signal ssO ; re 016 
MOVE loc[of 
BREAK 

****************** 
* * 

* END OF PLAN.  * 

TYPE "Program Completed!" 
WHILE TRUE DO 
END 

.END 



LIST OF REFERENCES 

1. Ishadawa, S., "On the Large-scale Project: "Automated 
Sewing System"," JIAM, Japan 1990. 

2. Gershon, D. and I. Porat, "Vision Servo Control of a 
Robotic Sewing System," Proceedings of the IEEE 
International Conference on Robotics and Automa- 
tion. Philadelphia, April 1988, pp. 1830-1835. 

3. Taylor, P.M., A.J. Wilkinson, G.E. Taylor, M.B. Gunner, 
G.S. Palmer, "Automated Fabric Handling Problems 
and Techniques," IEEE International Conference on 
Systems Engineering. Pittsburgh, 1990, pp. 367-370. 

4. Norton-Wayne, L., "Automated Garment Inspection Using 
Machine Vision," IEEE International Conference on 
Systems Engineering. Pittsburgh, 1990, pp. 374-377. 

5. Taylor, P.M., A.J. Wilkinson, I. Gibson, M.B. Gunner, 
G.S. Palmer, "An Integrated Automated Garment As- 
sembly System," IEEE International Conference on 
Systems Engineering. Pittsburgh, 1990, pp. 383-386. 

6. Kelley, R.B., "2-D Vision Techniques for the Handling 
of Limp Materials," NATO ASI Series: Sensory Robot- 
ics for the Handling of Limp Materials. Vol. F64, 
Springer-Verlag Berlin, 1990, pp. 141-157. 

7. Iype, C. and I. Porat, "Fabric Alignment Using A Rob- 
otic Vision System," International Journal of Clot- 
hing Science Technology. Vol.1.1, 1989, pp. 39-43. 

8. Torgerson, E. and F.W. Paul, "Vision Guided Robotic 
Fabric Manipulation for Apparel Manufacturing," 
IEEE International Conference on Robotics and 
Automation. Raleigh, 1987, pp. 1196-1202. 

9. Ogawa, S., "R&D in Automated Sewing System," JIAM. 
Japan, 1990. 

10. Halioua, M. and H. Liu, "Optical Three-Dimensional 
Sensing by Phase Measuring Profilometry," Optics 
and Lasers in Engineering. Vol. 11, 1989, pp. 185- 
215. 

11. Sato, K. and S. Inokuchi, "Range-Imaging System Utiliz- 
ing Nematic Liquid Crystal Mask," Proceedings of 
the IEEE First International Conference on Computer 
Vision. London, June 1987, pp. 657-661. 



157 

12. Sato, K. and S. Inokuchi, "Three-Dimensional Surface 
Measurement by Space Encoding Range Imaging," 
Journal of Robotic Systems, Vol. 2, No. 1, 1985, 
pp. 27-39. 

13. Elrom, I. and A. Hermala, "Intelligent Vision Based 
Contour Sensor Update," ISA Calgary '89 Symposium. 
April 3-5, 1989, pp. 359-368. 

14. Kehtarnavaz, N., "A Syntactic/Semantic Technique for 
Surface Reconstruction from Cross Sectional Con- 
tours ," Computer Vision. Graphics, and Image Pro- 
cessing. Vol. 42, 1988, pp. 399-409. 

15. Domey, J., M. Rioux, and F. Blais, "3-D Sensing for 
Robot Vision," NATA ASI Series: Sensory Robotics 
for the Handling of Limp Materials. Vol. F64, 
Springer-Verlag Berlin, 1990, pp. 167-202. 

16. Paul, F.W., E. Torgerson, S. Avigdor, D.R. Cultice, 
A. Gopalswamy, and K. Subba-Rao, "A Hierarchical 
System for Robot-Assisted Shirt Collar Processing," 
IEEE International Conference on Systems Engineer- 
ing. Pittsburgh, 1990, pp. 378-382. 

17. Torgerson, E.J., A Heirarchical Semi-Autonomous Control 
Scheme for Robot -Assisted Workstations. PhD. The- 
sis, Mechanical Engineering Department, Clemson 
University, Clemson, S.C., December 1991, Chap. 5. 

18. Figliola, R.S., and D.E. Beasley, Theory and Design for 
Mechanical Measurements. John Wiley & Sons, Inc. 
New York, 1991, Chap. 5. 

19. Luh, J.Y.S., and J.A. Klaasen, "A Three-Dimensional 
Vision by Off-Shelf System with Multi-Cameras," 
IEEE Transactions on Pattern Analysis and Machine 
Intelligence. Vol. PAMI-7, No. 1, January 1985. 

20. Castleman, K.R., Digital Image Processing. Prentice 
Hall, Englewood Cliffs, New Jersey, 1979, Chap. 17. 

21. Subba-Rao, K., Vision-Assisted Edge Alignment for the 
Automated Pressing of Two-Dimensional Apparel 
Components. MS. Thesis, Mechanical Engineering De- 
partment, Clemson University, Clemson, S.C., August 
1991. 

22. Gopalswamy, A., Design and Control of a Robot End- 
Effector for Three Dimensional Manipulation of 
Multiple-Ply Apparel Workpiecesf MS. Thesis, Me- 
chanical Engineering Department, Clemson Univer- 
sity, Clemson, S.C., August 1990. 



158 

23. Nakamura, T., T. Arai, Y. Tanaka, M. Satoh, and Y. Imazu, 
"Trajectory Generation of Redundant Manipulator for 
3-D Sewing System," ASME Proceedings on Flexible 
Automation. Minneapolis, MN, July 1988, pp. 35-40. 


